

New Constraints on Neutrino-Dark Matter Interactions

Bhupal Dev

bdev@wustl.edu

Washington University in St. Louis

w/ Doojin Kim, Deepak Sathyan, Kuver Sinha & Yongchao Zhang, 2407.abcde

CETUP* 2024, Lead

July 8, 2024

Connecting Two Mostly Unknown Sectors

Connecting Two Mostly Unknown Sectors

Connecting Two Mostly Unknown Sectors

How to Observe ν -DM Interactions

Opacity :
$$\tau = \sigma_{\nu\chi} \int dl \, \frac{\rho_{\chi}(l)}{m_{\chi}}$$

How to Observe ν -DM Interactions

Opacity :
$$\tau = \sigma_{\nu\chi} \int dl \, \frac{\rho_{\chi}(l)}{m_{\chi}}$$

For observable effect, need large opacity, which requires

• Large number density \Longrightarrow Light DM.

How to Observe ν -DM Interactions

Opacity :
$$\tau = \sigma_{\nu\chi} \int dl \, \frac{\rho_{\chi}(l)}{m_{\chi}}$$

For observable effect, need large opacity, which requires

- Large number density \Longrightarrow Light DM.
- Large neutrino travel distance through DM halo ⇒
 Astrophysical/cosmological sources.

• Cosmological:

- BBN and CMB [Serpico, Raffelt '04; Bœhm, Dolan, McCabe '13; Escudero '18; Giovanetti, Schmaltz, Weiner '24]
- Collisional damping [Bœhm, Fayet, Schaeffer '00; Bertoni, Ipek, McKeen, Nelson '14; Akita, Ando '23; Heston, Horiuchi, Shirai '24]
- Reionization History [Dey, Paul, Pal '22; Mosbech, Bohm, Wong '22]

• Cosmological:

- BBN and CMB [Serpico, Raffelt '04; Bœhm, Dolan, McCabe '13; Escudero '18; Giovanetti, Schmaltz, Weiner '24]
- Collisional damping [Bœhm, Fayet, Schaeffer '00; Bertoni, Ipek, McKeen, Nelson '14; Akita, Ando '23; Heston, Horiuchi, Shirai '24]
- Reionization History [Dey, Paul, Pal '22; Mosbech, Bochm, Wong '22]

• Astrophysical:

- SN1987A and future galactic SN [Mangano et al '06; Fayet, Hooper, Sigl '06]
- DSNB (future) [Farzan, Palomares-Ruiz '14]
- AGNs [Arguelles, Kheirandish, Vincent '17; Murase, Shoemaker '19; Cline et al '22; Ferrer, Herrera, Ibarra '22]
- DM self-annihilation or decay into neutrinos [Beacom, Bell, Mack '06; Palomares-Ruiz, Pascoli '07; Covi, Grefe, Ibarra '09; El Aisati et al '17]

• Cosmological:

- BBN and CMB [Serpico, Raffelt '04; Bœhm, Dolan, McCabe '13; Escudero '18; Giovanetti, Schmaltz, Weiner '24]
- Collisional damping [Bœhm, Fayet, Schaeffer '00; Bertoni, Ipek, McKeen, Nelson '14; Akita, Ando '23; Heston, Horiuchi, Shirai '24]
- Reionization History [Dey, Paul, Pal '22; Mosbech, Bochm, Wong '22]

• Astrophysical:

- SN1987A and future galactic SN [Mangano et al '06; Fayet, Hooper, Sigl '06]
- DSNB (future) [Farzan, Palomares-Ruiz '14]
- AGNs [Arguelles, Kheirandish, Vincent '17; Murase, Shoemaker '19; Cline et al '22; Ferrer, Herrera, Ibarra '22]
- DM self-annihilation or decay into neutrinos [Beacom, Bell, Mack '06; Palomares-Ruiz, Pascoli '07; Covi, Grefe, Ibarra '09; El Aisati et al '17]

• Lab constraints?

• Cosmological:

- BBN and CMB [Serpico, Raffelt '04; Bœhm, Dolan, McCabe '13; Escudero '18; Giovanetti, Schmaltz, Weiner '24]
- Collisional damping [Bochm, Fayet, Schaeffer '00; Bertoni, Ipek, McKeen, Nelson '14; Akita, Ando '23; Heston, Horiuchi, Shirai '24]
- Reionization History [Dey, Paul, Pal '22; Mosbech, Bochm, Wong '22]

• Astrophysical:

- SN1987A and future galactic SN [Mangano et al '06; Fayet, Hooper, Sigl '06]
- DSNB (future) [Farzan, Palomares-Ruiz '14]
- AGNs [Arguelles, Kheirandish, Vincent '17; Murase, Shoemaker '19; Cline et al '22; Ferrer, Herrera, Ibarra '22]
- DM self-annihilation or decay into neutrinos [Beacom, Bell, Mack '06; Palomares-Ruiz, Pascoli '07; Covi, Grefe, Ibarra '09; El Aisati et al '17]
- Lab constraints? Answer is YES and can be most stringent.

- Sensitive to both galactic SN & DSNB neutrino fluxes.
- Dominantly in the MeV energy range.
- ν -DM signal prefers light DM: $m_\chi \lesssim$ GeV.

Modeling ν -DM Interactions

• Simplified EFT approach.

[Olivares-Del Campo, Bœhm, Palomares-Ruiz, Pascoli, 1711.05283; Blennow, Fernandez-Martinez, Olivares-Del Campo, Pascoli, Rosauro-Alcaraz, Titov, 1903.00006]

• Categorize models into DM and mediator types: Scalar, fermion, vector.

Modeling ν -DM Interactions

• Simplified EFT approach.

[Olivares-Del Campo, Bœhm, Palomares-Ruiz, Pascoli, 1711.05283; Blennow, Fernandez-Martinez, Olivares-Del Campo, Pascoli, Rosauro-Alcaraz, Titov, 1903.00006]

- Categorize models into DM and mediator types: Scalar, fermion, vector.
- Secondary categorization: t-channel or s and u channel ν-DM scatterings, depending on the mediator type.

Only free parameters: DM and mediator masses and couplings.

Cross Sections

• We computed differential cross sections analytically and *exactly*.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{1}{8\pi} \frac{E_{\nu}^{\prime\,2}}{4m_{\chi}^2 E_{\nu}^2} \sum_{\mathrm{spins}} \overline{|\mathcal{M}|^2} \,,$$

where $\frac{1}{E_{\nu}^{\prime}} = \frac{1}{E_{\nu}} + \frac{1-\cos\theta}{m_{\chi}} \,.$

Cross Sections

• We computed differential cross sections analytically and *exactly*.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{1}{8\pi} \frac{E_{\nu}^{\prime\,2}}{4m_{\chi}^2 E_{\nu}^2} \sum_{\mathrm{spins}} \overline{|\mathcal{M}|^2},$$

where $\frac{1}{E_{\nu}^{\prime}} = \frac{1}{E_{\nu}} + \frac{1-\cos\theta}{m_{\chi}}.$

• Previous literature incomplete/inconsistent. E.g. scalar mediator case:

scenario	Lagrangian	channels	amp. sq.	[54]	[32]	Γ
complex scalar \dagger	(2.7)	t	(2.8)	_	\checkmark	
Dirac fermion	(2.9)	DM- ν : u	(2.10)	√*	_	
		DM- $\bar{\nu}$: s	(2 .11)	_	_	
Majorana fermion	(2.9)	s,u	(2.12)	X	—	
Dirac fermion †	(2.13)	t	(2.14)	—	\checkmark	
complex vector \dagger	(2.15)	t	(2.16)	—	—	

[32]: Argüelles, Kheirandish, Vincent, 1703.00451;

[54]: Olivares-Del Campo, Bœhm, Palomares-Ruiz, Pascoli, 1711.05283.

Bounds on ν -DM Interactions

- Included three categories of (updated) bounds on ν -DM interactions:
 - Cosmological: BBN, CMB, Collisional Damping, Relic Density.
 - Astrophysical: SN1987A, SIDM.
 - Laboratory: $0\nu\beta\beta$, Invisible Z decay, Pion and Kaon decays.

Bounds on ν -DM Interactions

- Included three categories of (updated) bounds on ν -DM interactions:
 - Cosmological: BBN, CMB, Collisional Damping, Relic Density.
 - Astrophysical: SN1987A, SIDM.
 - Laboratory: $0\nu\beta\beta$, Invisible Z decay, Pion and Kaon decays.
- Here we show one example scenario:

Dirac fermion DM, (pseudo)scalar mediator.

$$-\mathcal{L} = \phi \bar{\nu} \left(g_{\nu s} + i g_{\nu p} \gamma_5 \right) \nu + \phi \bar{\chi} \left(g_{\chi s} + i g_{\chi p} \gamma_5 \right) \chi \,.$$

Bounds on ν -DM Interactions

- Included three categories of (updated) bounds on ν -DM interactions:
 - Cosmological: BBN, CMB, Collisional Damping, Relic Density.
 - Astrophysical: SN1987A, SIDM.
 - Laboratory: $0\nu\beta\beta$, Invisible Z decay, Pion and Kaon decays.
- Here we show one example scenario:

Dirac fermion DM, (pseudo)scalar mediator.

$$-\mathcal{L} = \phi \bar{\nu} \left(g_{\nu s} + i g_{\nu p} \gamma_5 \right) \nu + \phi \bar{\chi} \left(g_{\chi s} + i g_{\chi p} \gamma_5 \right) \chi.$$

$$\sum_{\text{spins}} |\mathcal{M}|^2 = 4 \left(g_{\nu s}^2 + g_{\nu p}^2 \right) \frac{t \left[g_{\chi s}^2 (t - 4m^2) + g_{\chi p}^2 t \right]}{(t - m_\phi)^2} \,,$$

where $t = -2E_{\nu}E'_{\nu}(1 - \cos\theta)$.

Cosmological Bounds

Astrophysical Bounds

Laboratory Bounds

Updated Z Decay Constraints

[Berryman, de Gouvêa, Kelly, Zhang '18; de Gouvêa, BD, Dutta, Ghosh, Han, Zhang '19]

Updated Z Decay Constraints

14

Updated Z Decay Constraints

Updated Pion Decay Constraints

16

Updated Kaon Decay Constraints

Combined ν -DM Constraints

Depends on many things: DM density profile, location of the SN, DM and mediator masses and couplings.

Depends on many things: DM density profile, location of the SN, DM and mediator masses and couplings.

Depends on many things: DM density profile, location of the SN, DM and mediator masses and couplings.

Assume a supernova at s = 10 kpc. Near the galactic center would be best.

Best Case Scenario for Local Supernova

Flux Attenuation

Event Rate at DUNE

Using Warren20 SN neutrino spectrum [Warren, Couch, O'Connor, Morozova, 1912.03328]

Event Rate at Hyper-K

Using Warren20 SN neutrino spectrum [Warren, Couch, O'Connor, Morozova, 1912.03328]

Conclusions

- There exist strong constraints on neutrino-DM interactions from cosmology, astrophysics and lab experiments.
- Must not be overlooked while considering future detection prospects of ν -DM interactions.
- We updated some of these constraints, especially those from Z decay and meson decays, taking into account the one-loop correction.
- Identified benchmarks which pass all constraints and can still give a detectable effect in future neutrino experiments.
- Waiting for the next galactic supernova!

PIENU and NA62

Cancellation of IR Divergence in Meson Decay

$$\Gamma^{\text{tree}}(\mathsf{M} \to \ell + \chi + \phi) = \frac{G_F^2 m_\mathsf{M}^3 f_\mathsf{M}^2 |V|^2 g_\nu^2}{128\pi^3} f(x_{\phi\mathsf{M}}, x_{\ell\mathsf{M}}), \qquad (1)$$

$$f(x_1, x_2) \simeq -x_2(1 + 2x_2 - x_2^2)\operatorname{arctanh} \frac{1 - x_2}{1 + x_2} + \frac{1}{6}(1 - x_2)$$
$$\times \left[2 - 4x_2(4 - 5x_2) - 3x_2(1 - x_2)\left(2\log x_1 + \log 2x_2 - 4\log(1 - x_2)\right)\right]$$

Cancellation of IR Divergence in Meson Decay

$$\Gamma^{\text{tree}}(\mathsf{M} \to \ell + \chi + \phi) = \frac{G_F^2 m_\mathsf{M}^3 f_\mathsf{M}^2 |V|^2 g_\nu^2}{128\pi^3} f(x_{\phi\mathsf{M}}, x_{\ell\mathsf{M}}), \qquad (1)$$

$$f(x_1, x_2) \simeq -x_2(1 + 2x_2 - x_2^2)\operatorname{arctanh} \frac{1 - x_2}{1 + x_2} + \frac{1}{6}(1 - x_2)$$
$$\times \left[2 - 4x_2(4 - 5x_2) - 3x_2(1 - x_2)\left(2\log x_1 + \log 2x_2 - 4\log(1 - x_2)\right)\right]$$

$$\Gamma^{\text{int.}}(\mathsf{M} \to \ell + \nu) = \frac{G_F^2 m_\mathsf{M} m_\ell^2 f_\mathsf{M}^2 |V|^2 g_\nu^2}{128\pi^3} f^{\text{loop}}(x_{\phi\mathsf{M}}, \, x_{\ell\mathsf{M}}, \, x_{\chi\mathsf{M}}) \,. \, (2)$$

$$f^{\text{loop}}(x_1, x_2, x_3) = \frac{1}{4(x_1 - x_3)^2} \left[x_1^2 (5 + 2\log 4\pi) + x_3^2 \left(7 + 2\log \frac{16\pi^2 x_1}{x_3} \right) - 4x_1 x_3 (3 + 2\log 4\pi) - 2(x_1 - x_3)^2 \log x_1 (1 - x_2)^2 \right].$$

The IR divergent part $x_{\ell M}(1-x_{\ell M})^2 \log x_{\phi M}$ cancels between (1) & (2).

Event Distributions (No Attenuation Case)

[Hajjar, Mena, Palomares-Ruiz, 2303.09369]