Neutrino and light dark matter physics with directional detectors

Diego Aristizabal USM

vBDX-DRIFT collaboration:

Diego Aristizabal, Joshua Barrow, Bhaskar Dutta

Doojin Kim, Daniel Snowden-Ifft

Louis Strigari, Michael Wood

Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Final remarks

Detectors used in DM direct searches or CEvNS measurements rely mainly in energy deposition measurements **Directionality adds a new observable!**

- Measure CEvNS in targets not yet used at energies not yet explored
 - Measurements with higher background discrimination
- Study up-scattering processes \Rightarrow Provides info on nature of up-scattered d.o.f
- Analysis of $2 \rightarrow 3$ processes with invisible final state \Rightarrow Hard to identify using RS alone
 - Searches for LDM produced in e.g. neutral meson decays with an extra observable
 - Identification of the DM spin through angular distribution measurements

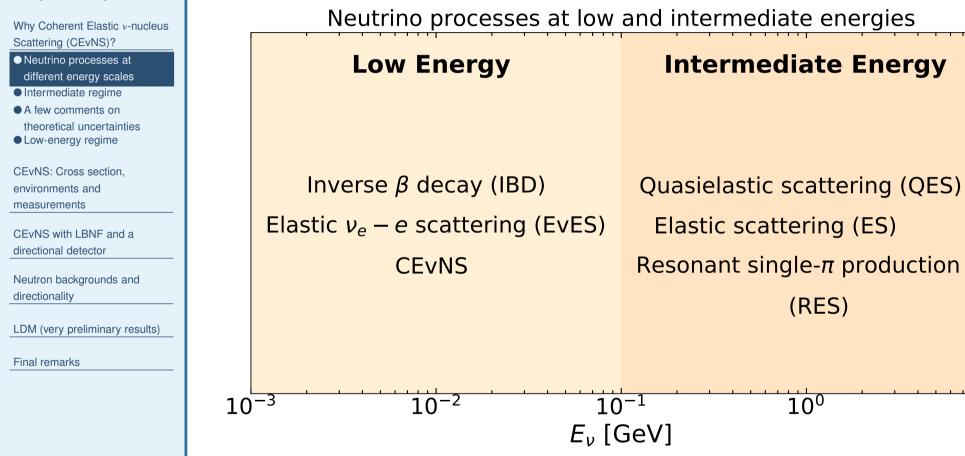
• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

- Neutrino processes at different energy scales
- Intermediate regime
- A few comments on theoretical uncertainties
 Low-energy regime

CEvNS: Cross section, environments and measurements

CEvNS with LBNF and a directional detector


Neutron backgrounds and directionality

LDM (very preliminary results)

Final remarks

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

 10^{1}

Intermediate regime

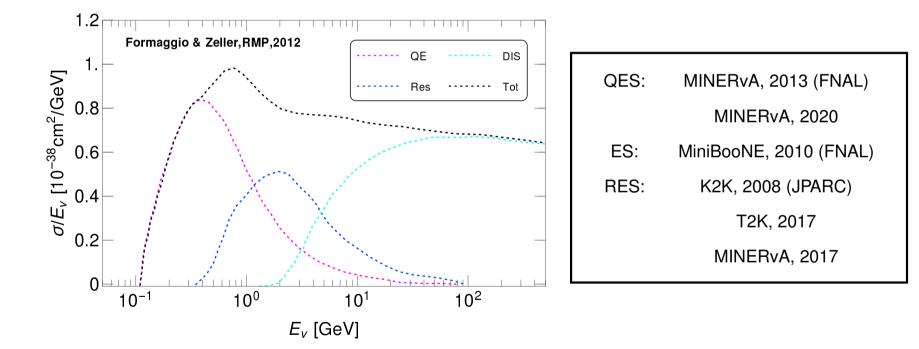
Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

 Neutrino processes at different energy scales

Intermediate regime

 A few comments on theoretical uncertainties
 Low-energy regime

CEvNS: Cross section, environments and measurements


CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Final remarks

QES (CC)	ES (NC)	RES (NC & CC)
$\nu_{\mu} + n \rightarrow \mu^{-} + p$	$v + p \rightarrow v + p \overline{v} + p \rightarrow \overline{v} + p$	$ \nu_{\mu}N \rightarrow \mu^{-}N^{*} \rightarrow \mu^{-}\pi N' $
$\overline{\nu}_{\mu} + p \rightarrow \mu^{+} + n$	$\nu + n \rightarrow \nu + n \overline{\nu} + n \rightarrow \overline{\nu} + n$	$ u_{\mu}N ightarrow u_{\mu}N^{*} ightarrow u_{\mu}\pi N^{\prime}$

Theoretically calculations are challenging Theoretical uncertainties are large! Dominant effects

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

 Neutrino processes at different energy scales

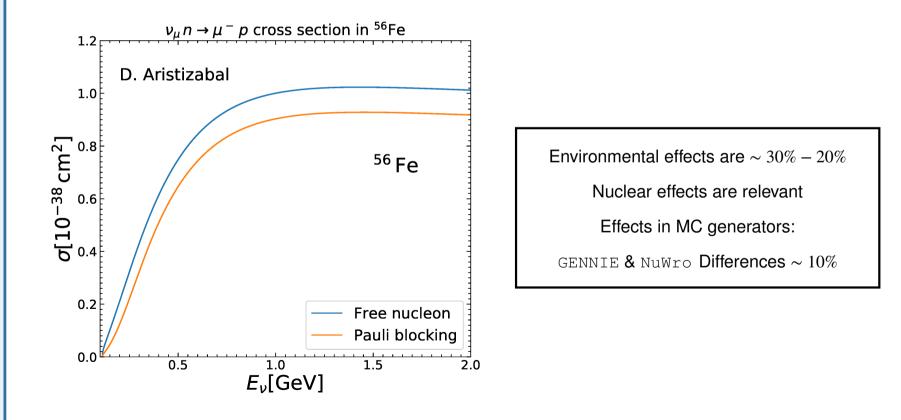
Intermediate regime

 A few comments on theoretical uncertainties
 Low-energy regime

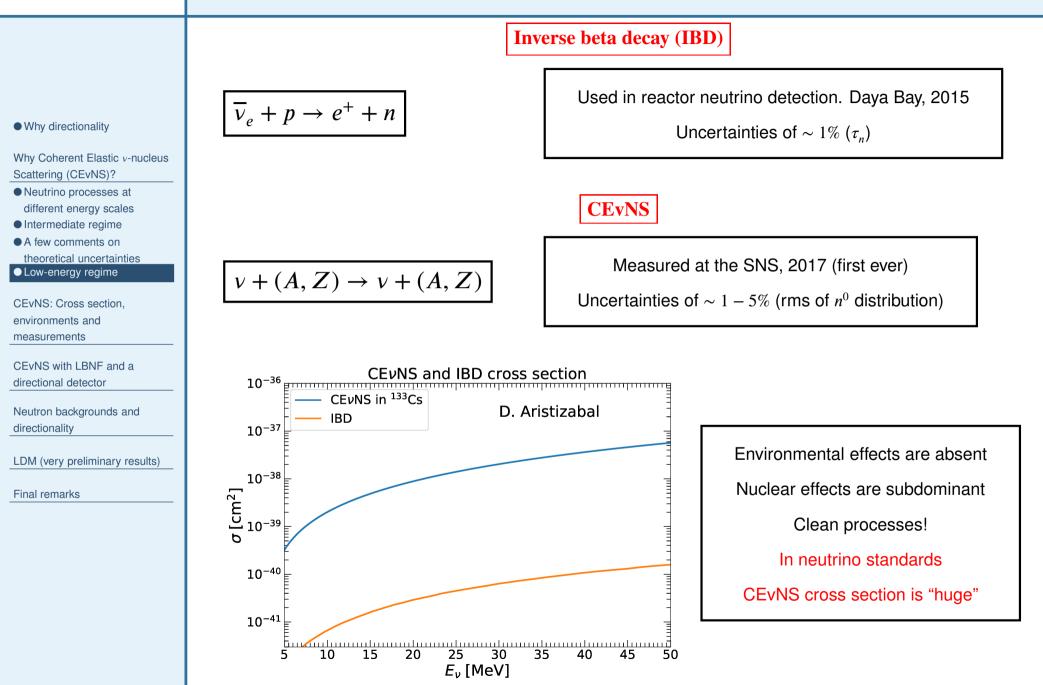
CEvNS: Cross section,			
environments and			
measurements			

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality


LDM (very preliminary results)

Final remarks


Pauli blocking: Final-state fermion states must be assured an unoccupied quantum state.

Fermi motion: Nucleons in the nuclear environment are not at rest.

<u>Reinteractions</u>: The recoiling nucleon can reinteract in the nuclear medium

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

• CEvNS cross section

• CEvNS environments

- Neutrino sources and CEvNS "regimes"
- Ongoing projects worldwide

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Final remarks

CEvNS: Cross section, environments and measurements

CEvNS cross section

 $CE_{\nu}NS$ occurs when the neutrino energy E_{ν} is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

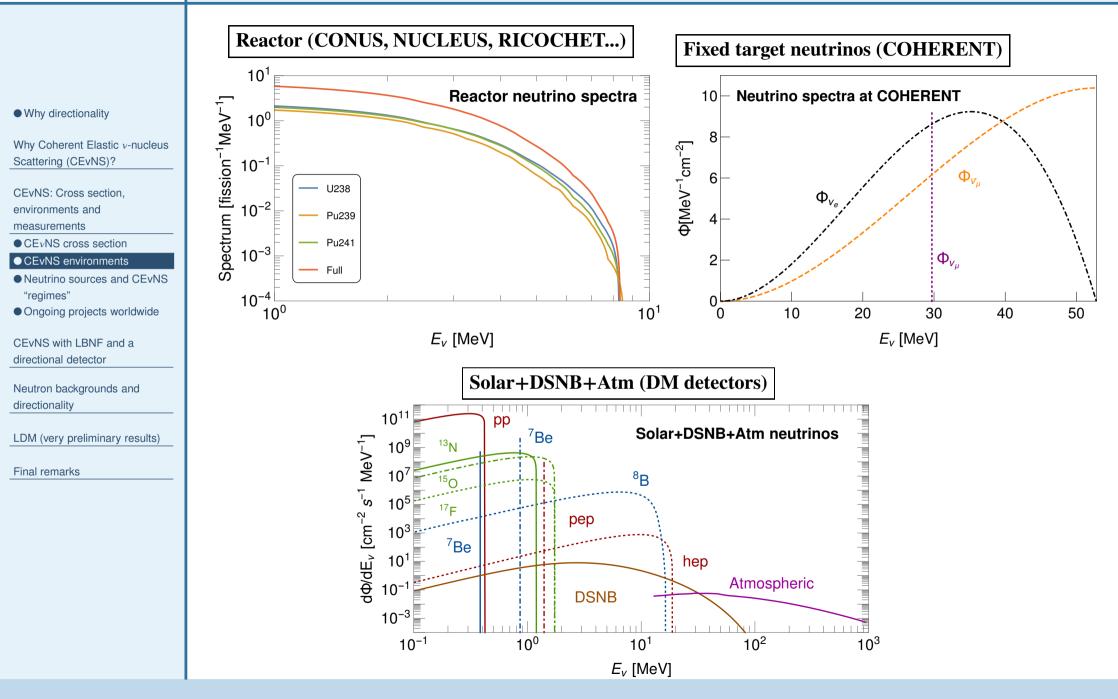
Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

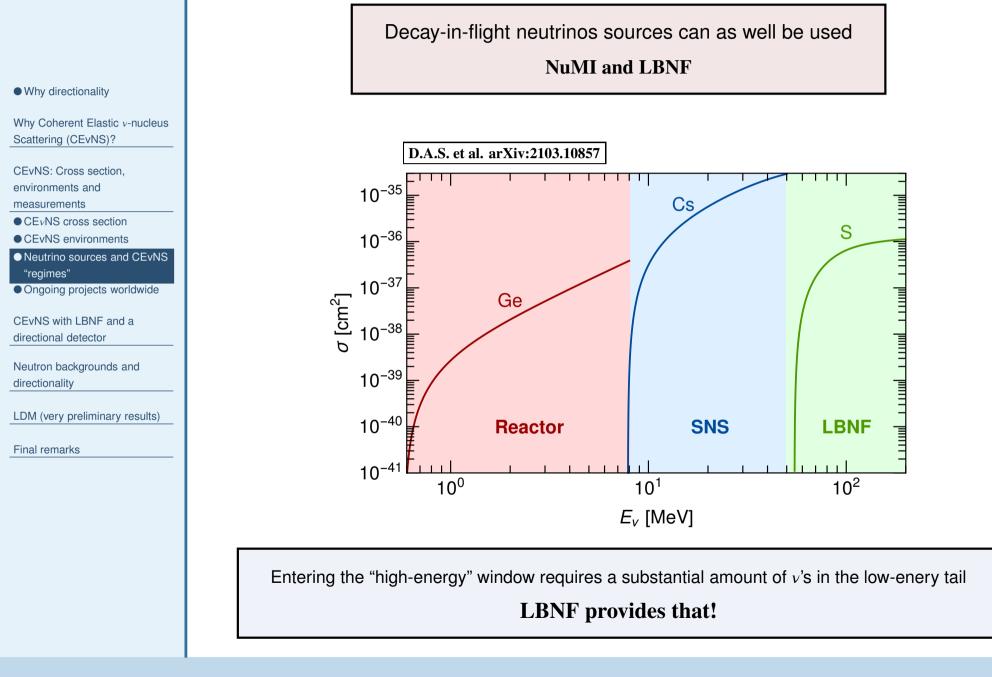
CEvNS: Cross section,


environments and

- measurements
- CE vNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Ongoing projects worldwide


CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality


LDM (very preliminary results)

CEvNS environments

Neutrino sources and CEvNS "regimes"

Ongoing projects worldwide

• Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

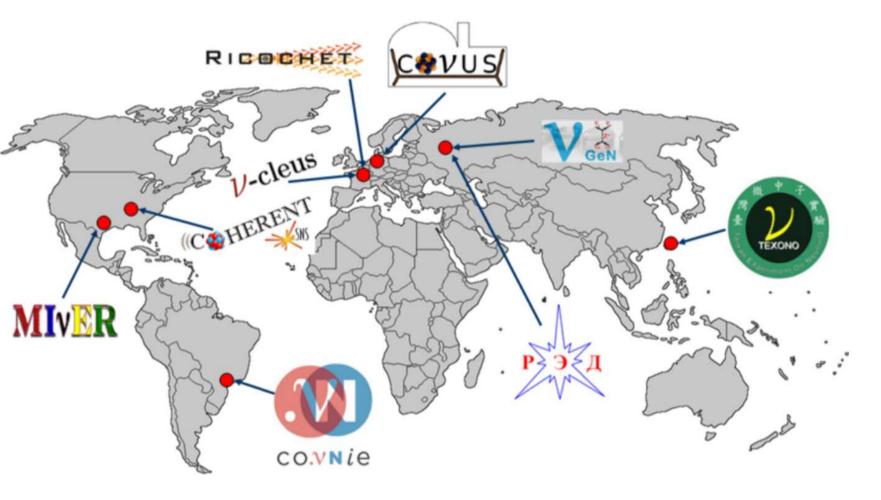
CEvNS: Cross section,

environments and

measurements

CEvNS cross section

CEvNS environments


• Neutrino sources and CEvNS "regimes"

Ongoing projects worldwide

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

- Argentina vIOLETA (Neutrino Interaction Observation with a Low Energy Threshold Array)
- Mexico SBC (Scintillating Bubble Chamber)
- Belgium SoLid (Search for oscillations with Lithium 6 detector)
- South Korea NEON (Neutrino Elastic-scattering Observation experiment with Nal[TI] crystal)

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

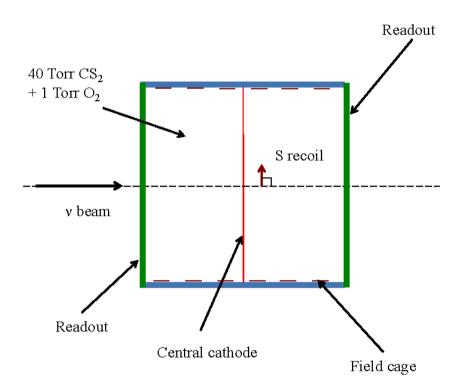
measurements

CEvNS with LBNF and a directional detector

- vBDX-DRIFT: Basics
- Signals in CS₂ and CF₄
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Neutrino Nonstandard
 Interactions (NSI)

Neutron backgrounds and directionality

LDM (very preliminary results)


Final remarks

CEvNS with LBNF and a directional detector

vBDX-DRIFT: Basics

☐ Directional low pressure TPC detector

 \Box Operates with CS₂ (other gases possible CF₄, C₈H₂₀Pb...)

Show the second sec

 \Box CS₂ ions used to transport the ionization to the readout planes (MWPCs)

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section,

environments and

measurements

CEvNS with LBNF and a directional detector

● vBDX-DRIFT: Basics

- Signals in CS_2 and CF_4 • Measurements of R_n via
- CEvNS
- Neutron density distributions: Results
- Neutrino Nonstandard Interactions (NSI)

Neutron backgrounds and directionality

LDM (very preliminary results)

Signals in CS₂ and CF₄

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section,

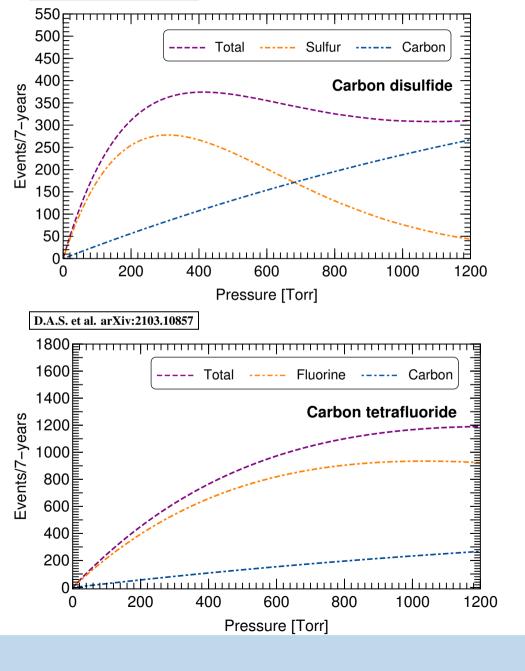
environments and

measurements

CEvNS with LBNF and a directional detector

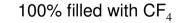
• vBDX-DRIFT: Basics

• Signals in CS_2 and CF_4


• Measurements of R_n via CEvNS

- Neutron density distributions: Results
- Neutrino Nonstandard Interactions (NSI)

Neutron backgrounds and directionality


LDM (very preliminary results)

Final remarks

Signal peaks at 400 Torr

Expected signal: 370 events

Expected signal: 880 events

Measurements of R_n via CEvNS

$$F_W(q^2) = \frac{1}{Q_W} \left[Z g_V^p F_V^p(q^2) + (A - Z) g_V^n F_V^n(q^2) \right]$$

 \Rightarrow F_V^p : Depends on $R_p \Rightarrow$ known at 0.1% level ($e^- - N$ scattering)

 \Rightarrow F_V^n : Depends on $R_n \Rightarrow$ poorly known (hadron experiments)

$$N_{\text{CEvNS}} = N_{\text{CEvNS}}(R_n)$$

$$N_{\mathsf{CEvNS}}^{\mathsf{Exp}} \Rightarrow R_n$$

Miranda et al, JHEP 05 (2020)

$$12$$

 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

COHERENT 90% CL limits Csl: $R_n^{Cs} = R_n^1$: $R_n \subset [3.4, 7.2]$ fm Ar: $R_n < 4.33$ fm

Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section,

environments and

measurements

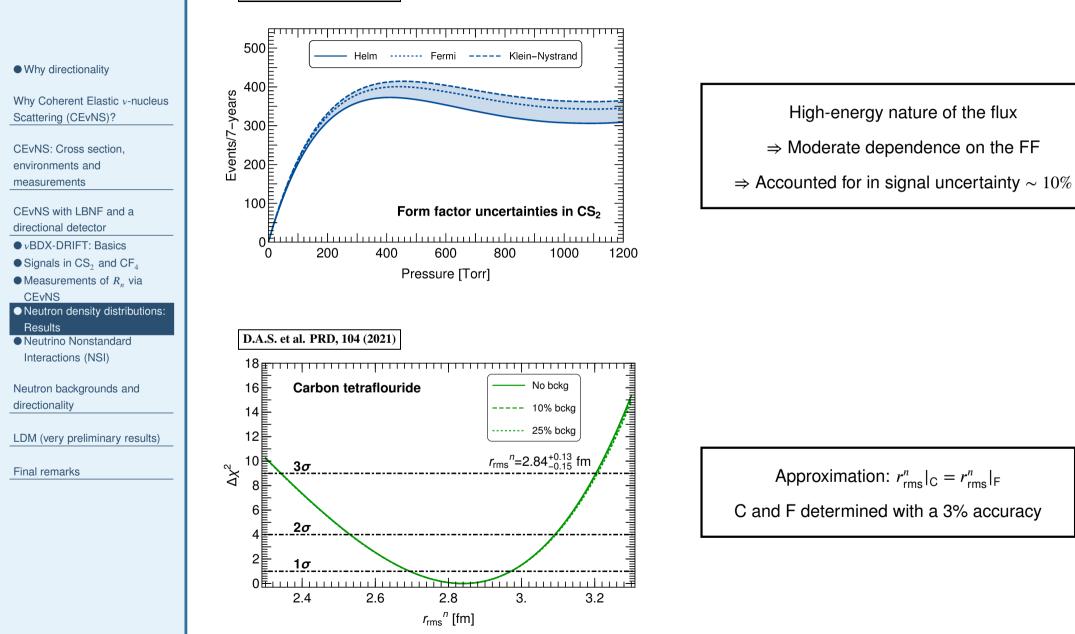
CEvNS with LBNF and a directional detector

• vBDX-DRIFT: Basics

Signals in CS₂ and CF₄

• Measurements of R_n via CEvNS

 Neutron density distributions: Results


 Neutrino Nonstandard Interactions (NSI)

Neutron backgrounds and directionality

LDM (very preliminary results)

Neutron density distributions: Results

D.A.S. et al. PRD, 104 (2021)

$$\mathcal{L}_{\text{NSI}} \sim G_F \bar{\nu}_a \gamma_\mu (1 - \gamma_5) \nu_b \, q \gamma^\mu \epsilon^q_{ab} q$$

Initial state flavor, v_{μ} : Only $\epsilon_{\mu b}$ parameters are testable

CEvNS: Cross section,

Why Coherent Elastic v-nucleus

• Why directionality

Scattering (CEvNS)?

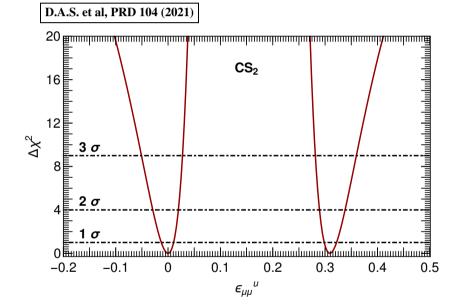
environments and

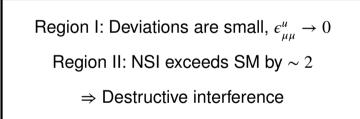
measurements

CEvNS with LBNF and a directional detector

• vBDX-DRIFT: Basics

Signals in CS₂ and CF₄


 Measurements of R_n via CEvNS


 Neutron density distributions: Results

 Neutrino Nonstandard Interactions (NSI)

Neutron backgrounds and directionality

LDM (very preliminary results)

vBDX-DRIFT CS ₂ (7-years)		COHERENT CsI (1-year)	
$\epsilon^{u}_{\mu\mu}$	$[-0.013, 0.011] \oplus [0.30, 0.32]$	$\epsilon^{u}_{\mu\mu}$	$[-0.06, 0.03] \oplus [0.37, 0.44]$
$\epsilon^{u}_{e\mu}$	[-0.064, 0.064]	$\epsilon^{u}_{e\mu}$	[-0.13, 0.13]

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

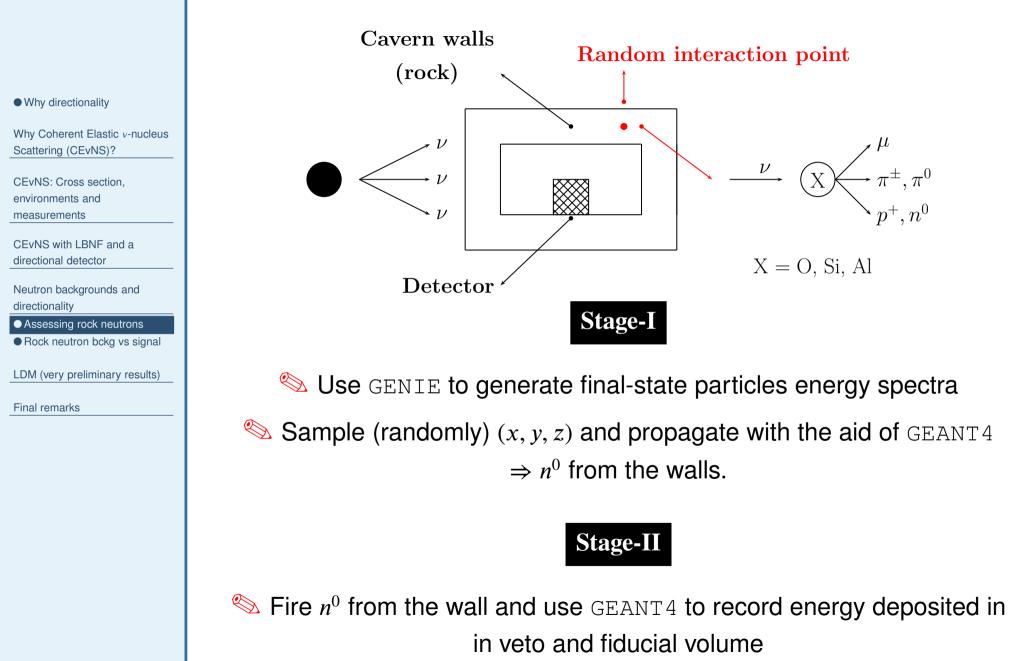
CEvNS: Cross section, environments and

measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

• Assessing rock neutrons


Rock neutron bckg vs signal

LDM (very preliminary results)

Final remarks

Neutron backgrounds and directionality

Assessing rock neutrons

Rock neutron bckg vs signal

D.A.S. et al. arXiv:2209.08612

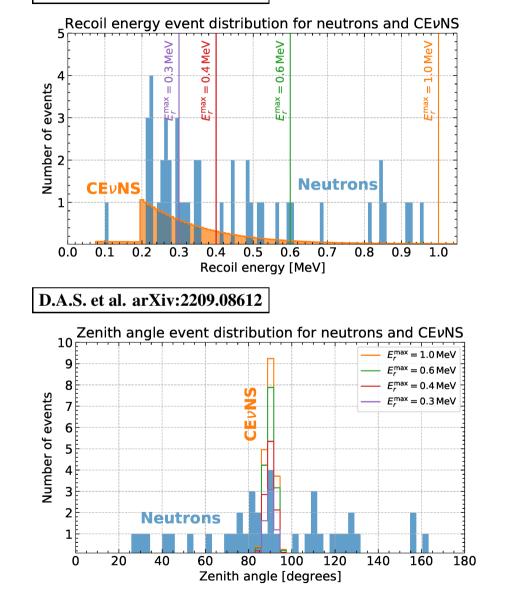
• Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

CEvNS with LBNF and a directional detector


Neutron backgrounds and directionality

Assessing rock neutrons

Rock neutron bckg vs signal

LDM (very preliminary results)

Final remarks

NuMI Low Energy (LE) mode

Exposure 10 m³ – year

Events pile up at 90°

Signal-to-noise ratio: 2.5

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section,

environments and measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Production

LDM fluxes

• π^0 flux

- Double differential BR
- Dalitz plot and on-shell/off-shell A_D^{μ}
- Doble differential BR in lab frame
- Technical implementation
- Fluxes at production

Final remarks

LDM (very preliminary results)

Production

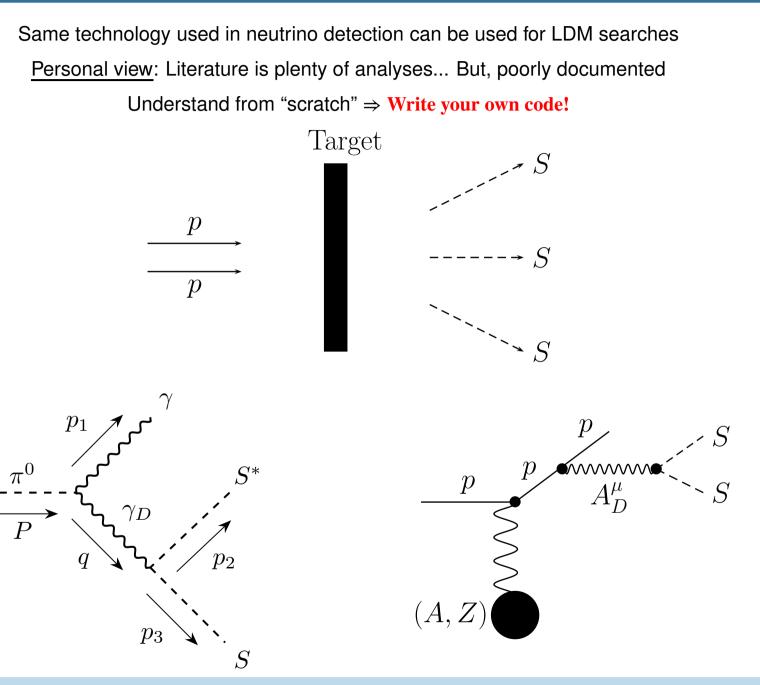
• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality


LDM (very preliminary results)

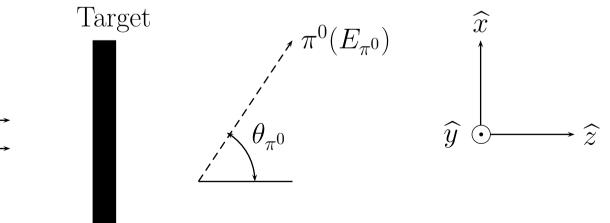
Production

- LDM fluxes
- π^0 flux
- Double differential BR

 Dalitz plot and on-shell/off-shell A^µ_D

- Doble differential BR in lab frame
- Technical implementation
- Fluxes at production

LDM fluxes


Benchmark (validate) code with existent COHERENT data/analysis

 \Rightarrow Focus in π^0 decays

A fraction of the π^0 produce an spectrum given by

$$\frac{d^2 N_X}{dE_3^{\text{Lab}} d\cos\theta_3^{\text{Lab}}} = \int \underbrace{\frac{d^2 N_{\pi^0}}{dE_{\pi^0} d\cos\theta_{\pi^0}}}_{\text{Lab}} \frac{d^2 \text{Br}(\pi^0 \to \gamma + X + X)}{dE_3^{\text{Lab}} d\cos\theta_3^{\text{Lab}}} dE_{\pi^0} d\cos\theta_{\pi^0}$$

 \Rightarrow DM distribution is azimuth-symmetric w.r.t. proton beam (\hat{z}) [$s(\pi^0) = 0$]

Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Production

LDM fluxes

 $\bullet \pi^0$ flux

Double differential BR

 Dalitz plot and on-shell/off-shell A^µ_D

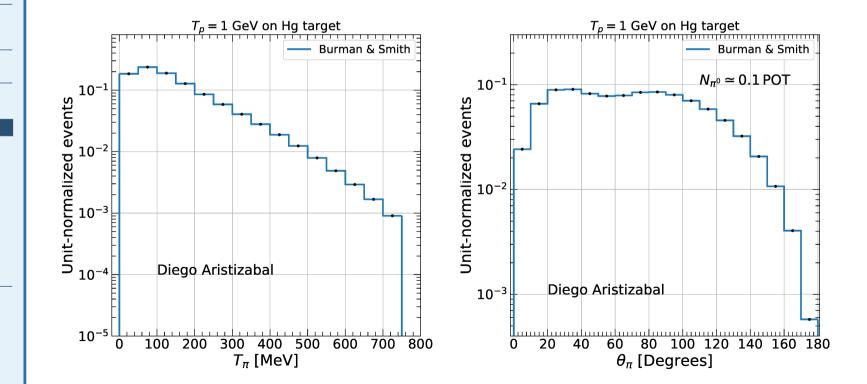
- Doble differential BR in lab frame
- Technical implementation
- Fluxes at production

Final remarks

p

 \mathcal{D}

π^0 flux


Two paths can be followed:

Ideally, run a GEANT4 simulation

Approximation: use π^{\pm} fluxes parametrizations

⇒ For $T_p \leq 1$ GeV: Burman and Smith parametrization for π^+ (π^- get absorbed by nuclei)

 \Rightarrow For 1 GeV $\lesssim T_p \lesssim 10$ GeV: Sanford & Wang parametrization for π^{\pm}

Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

- Production
- LDM fluxes

$\bullet \pi^0$ flux

Double differential BR

- Dalitz plot and on-shell/off-shell A^µ_p
- Doble differential BR in lab frame
- Technical implementation
- Fluxes at production

Double differential BR

• Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

CEvNS with LBNF and a directional detector

```
Neutron backgrounds and directionality
```

- LDM (very preliminary results)
- Production
- LDM fluxes

• π^0 flux

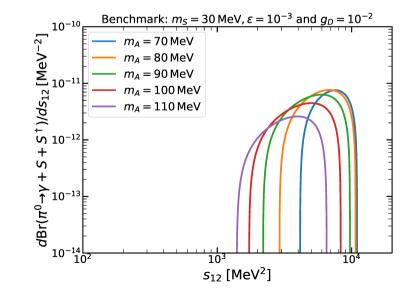
Double differential BR

 Dalitz plot and on-shell/off-shell A^µ_D

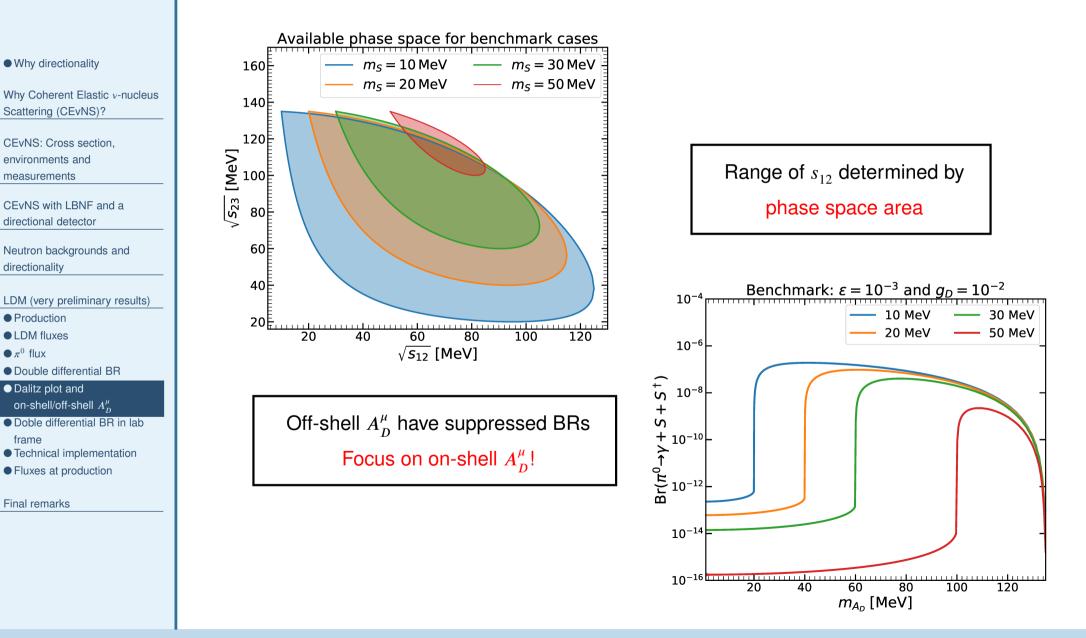
- Doble differential BR in lab frame
- Technical implementation
- Fluxes at production

Final remarks

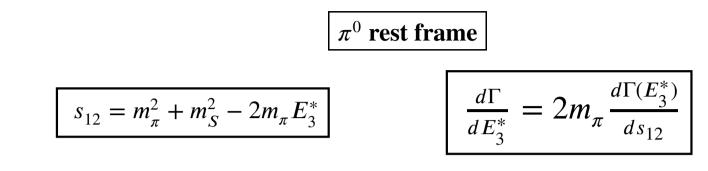
Analytical integration of three-body phase space in terms of invariant masses


 \Rightarrow Go to the π^0 rest frame

 \Rightarrow Boost the result to the Lab frame


$$d^{2}\Gamma = \frac{1}{(2\pi)^{3}} \frac{1}{2^{5} m_{\pi}^{3}} |\mathcal{M}|^{2} ds_{12} ds_{23}$$

Benchmark: $m_S = 10 \text{ MeV}$, $\varepsilon = 10^{-3}$ and $g_D = 10^{-2}$ $m_A = 30 \text{ MeV}$ $m_A = 50 \text{ MeV}$ $m_A = 70 \text{ MeV}$ $m_A = 90 \text{ MeV}$ $m_A = 110 \text{ MeV}$ $m_A = 10^{-12}$ $m_A = 10^{-12}$ $m_A = 10$


 $|\mathcal{M}|_{\text{Num}}^2 = -m_S^2 m_\pi + s_{23} [m_\pi^2 m_S^2 + s_{12} (m_\pi^2 + m_S^2) - s_{12}^2 - m_S^4] - s_{12} s_{23}^2$ Integration over s_{23} can be done analytically!

First check: Dalitz interpretation and on-shell/off-shell BRs

Doble differential BR in lab frame

CEvNS: Cross section, environments and

Why Coherent Elastic v-nucleus

• Why directionality

Scattering (CEvNS)?

measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

- Production
- LDM fluxes
- π^0 flux
- Double differential BR
- Dalitz plot and on-shell/off-shell A^µ_D
- Doble differential BR in lab frame
- Technical implementation
- Fluxes at production

Laboratory frame

$$\beta = \sqrt{E_{\pi}^2 - m_{\pi}^2}/E_{\pi}$$
 $\gamma = E_{\pi}/m_{\pi}$
 \widehat{y}

$$E_{3}^{\text{Lab}} = \gamma (E_{3}^{*} + p_{3x}^{*} + p_{3z}^{*})$$
$$\tan \theta_{3}^{\text{Lab}} = p_{3x}^{*} / p_{3z}^{*}$$

$$\frac{d^{2}\Gamma}{dE_{3}^{\text{Lab}}d\cos\theta_{3}^{\text{Lab}}} = 2m_{\pi}\frac{d\Gamma}{ds_{12}}J(E_{3}^{\text{Lab}},\theta_{3}^{\text{Lab}},E_{\pi},\theta_{\pi})$$

Technical implementation

• Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Production

• LDM fluxes • π^0 flux

- Double differential BR
- Dalitz plot and on-shell/off-shell A^µ_p
- Doble differential BR in lab frame

Technical implementation

Fluxes at production

Final remarks

The parameter space dependence can be split in two independent data sets

Set 1: Kinematics parameters

 $\{E_{\pi},\theta_{\pi},E_3^*,\theta_3^*\}$

Set 2: Model parameters $\{m_S, m_{A_D}, \epsilon, g_D\}$

The problem is—in general—very CPU expensive

Strategy

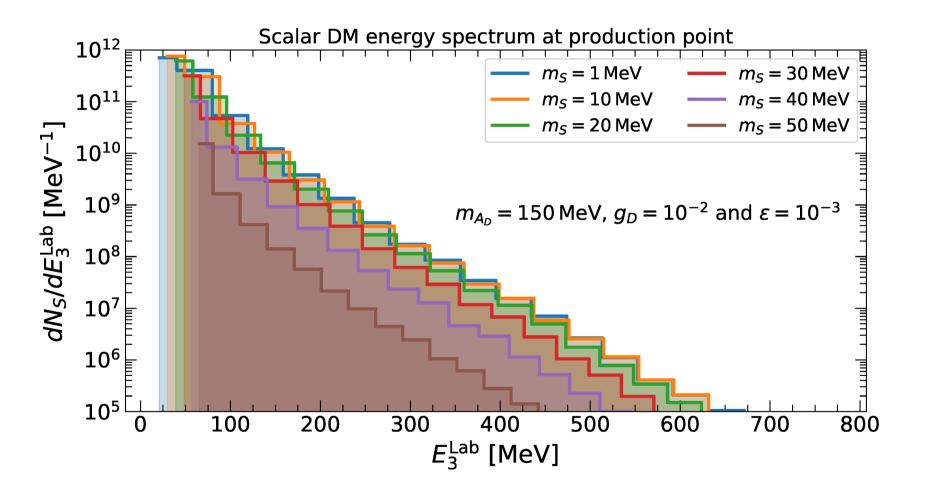
- ⇒ Grid over set 2 and run Monte Carlo over set 1
- ⇒ For fixed set 2, generate a random uniform set 1
- \Rightarrow Bin E_3^{Lab} and sum at each bin over all other variables

Fluxes at production

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements


CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

- Production
- LDM fluxes
- π^0 flux
- Double differential BR
- Dalitz plot and on-shell/off-shell A^µ_D
- Doble differential BR in lab frame
- Technical implementation

• Fluxes at production

• Why directionality

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section,

environments and measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Final remarks

Conclusions

Conclusions

Why directionality

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

CEvNS with LBNF and a directional detector

Neutron backgrounds and directionality

LDM (very preliminary results)

Final remarks

Conclusions

VBDX-DRIFT combined with a high-energy neutrino beam (e.g. LBNF) is suitable for CEvNS measurements in CS₂, CF₄, C₈H₂₀Pb...

Rock neutron background is likely to be the most challenging background Directionality allows background rejection

Confers a rich neutrino program, complementary to other CEvNS related agendas: *v*-cleus, CONUS, CONNIE, COHERENT (SNS)...

SM measurements include: Weak mixing angle at $\langle Q \rangle \simeq 0.1 \text{ GeV}$ neutron density distributions of C, F, S, Pb with sensitivities of order 3-8%. Searches for NSI and BSM physics possible

> Mork to test feasibility for LDM searches underway Directionality might offer a new avenue not yet explored