

THE INSTITUTE CETUP* 2024 FOR UNDERGROUND SCIENCE AT SURF

Journey with Sourced Millicharged Particles and Dark Photons

Zhen Liu University Minnesota

Now: Journey to the unknown and seeking opportunities

Zhen Liu

Dark Jouney

Part I: MilliCharged Particles

MCP as partial DM

6

Millicharged Particles at Neutrino Experiments

Strong Beam, strong signal

Zhen Liu

Dark Jouney

CETUP* 2024

NuMI beam: good source for Millicharged particles

	π^0	η	η'	ho	ω	ϕ	J/ψ	DY
#/POT	2.9	3.2×10^{-1}	3.4×10^{-2}	3.7×10^{-1}	3.7×10^{-1}	1.1×10^{-2}	5.4×10^{-7}	$4.7 \times 10^{-10} \epsilon^2$
$2 \times \operatorname{Br}_{X \to \chi \bar{\chi}}(\%)$	$2.3\epsilon^2$	$1.4\epsilon^2$	$0.04\epsilon^2$	$0.009\epsilon^2$	$0.018\epsilon^2$	$0.058\epsilon^2$	$12\epsilon^2$	
$A_{\rm geo}^{\rm ArgoNeuT}(m_{\chi}=20 {\rm ~MeV})$	3.1×10^{-5}	2.1×10^{-5}	1.6×10^{-5}	1.9×10^{-5}	2.0×10^{-5}	9.1×10^{-6}	5.0×10^{-6}	3.2×10^{-6}
$A_{\text{geo}}^{\text{ArgoNeuT}}(m_{\chi}=200 \text{ MeV})$		5.4×10^{-5}	3.4×10^{-5}	2.3×10^{-5}	2.2×10^{-5}	1.1×10^{-5}	4.6×10^{-6}	3.1×10^{-6}

Zhen Liu

Dark Jouney

CETUP* 2024

07/02/2024

9

Productions: millicharged particles are boosted

10

Detection

Signal scattering probability and mean free path

Zhen Liu

Dark Jouney

CETUP* 2024

Liquid Argon (LAr) Detectors

- Large (ArgoNeuT, microBooNE, SBND, ICARUS, DUNE)
- Clean
- Tracking
- Calorimetry
- High Resolution
- Particle ID

LAr TPC gives 2-in-1: Bubble chamber quality of data with added calorimetry

Dark Jouney

Backgrounds

Soft hits. will be commonplace. Slow neutrons, γ 's, cosmics, electronics, radioactives (Ar39)...

Bkg Scal			# frames with			# Background events				
	Bkg Scaling	Bkg reduction	≥ 0 hit	≥ 1 hits	≥ 2 hits	Singlets	Doublets	Aligned	Triplets	Aligned
								doublets		triplets
ArgoNeuT	Reference	Systematic	$3.3 imes 10^6$	$3.9 imes 10^5$	2.4×10^4	4.2×10^5	2.7×10^4	0.24	1.1×10^3	9.1×10^{-8}

Average occupation number per frame: ArgoNeuT: 0.13

Zhen Liu

Dark Jouney

Background Reduction

- Double hit probability ~ $(P_{hit})^{2}$.
- If we have spatial resolution \rightarrow 2-hit BG can be reduced by requiring alignment with target.

We then recalled a key feature of LAr detectors, and designed a new search:

 $\delta y \times \delta x \times \delta z = 5.6 \text{ mm} \times 0.3 \text{ mm} \times 3.2 \text{ mm}.$

$$N_{2\,\mathrm{hit}}^{\mathrm{aligned}} = N_{2\,\mathrm{hit}} \times \left(\frac{\delta x}{\Delta x} \frac{\delta y}{\Delta y}\right)$$

Dark Jouney

Expected reach

Harnik, ZL, Palamara, <u>1902.03246</u>

Zhen Liu

Dark Jouney

CETUP* 2024

Search for mCP in ArgoNeuT

• Uncertainties are determined by

- the uncertainties in the locations of the clusters inside the detector
 - 0.015 cm in the horizontal drift direction
 - 0.28 cm in the vertical direction
 - 0.16 cm along the beam direction
- while small compared to the size of the detector, uncertainties become quite large when extrapolated to the location of the target (1033 m upstream)

Locations of the points of intersections of lines defined by two clusters with a plane perpendicular to the beam at the downstream target's edge

one mCP Signal Candidate Event observed, Compatible with the expected background

Zhen Liu¹⁸

Dark Jouney

CETUP* 2024

The Candidate Signal Event

Zhen Liu19

Dark Jouney

Harnik, Liu, Palamara, 19' Liu with ArgoNeuT Collaboration, 20'

Looking into the future

Harnik, Liu, Palamara, 19' Liu with ArgoNeuT Collaboration, PRL, 20'

How to see Millicharged Particles (Again)?

Signal scattering probability and mean free path

$$\left. \frac{d\sigma}{dE_r} \right|_{E_\chi \gg m_\chi, m_e, E_r} \simeq \frac{2\pi \alpha^2 \epsilon^2}{E_r^2 m_e}.$$

Dominated by low recoil energy scattering

What if we lower the threshold?

$$\lambda(E_r^{\rm min}) \simeq \left(\frac{10^{-2}}{\epsilon}\right)^2 \left(\frac{E_r^{\rm min}}{1~{\rm MeV}}\right) \ 1~{\rm km}$$

Compared to LAr, Skipper CCD increases signal efficiency by 10⁵ (1 MeV v.s. 10 eV)

Dark Jouney

Single Scatter Detection Parametric:

- Detection Rate proportional to Volume
 - SENSEI 3gram is small in volume, about 1/10⁵ compared to ArgoNeuT
- Detection Rate proportional to effective POT

New Results with SENSEI Collaboration (2305.04964)

3 gram of detectors with 3 days equivalent of data already achieving new results.

24

Zhen Liu

Dark Jouney

CETUP* 2024

There are many already "under construction"

Solid: one month of current beam;

Dashed: one month of current beam with OSCURA

Dot-Dashed: DUNE beam with OSCURA

 ϵ^4 -scaling

Zhen Liu

with the OSCURA collaboration (2304.08625)

Assuming 1kg skipper CCD for "early science" of OSCURA experiment.

Different background level assumptions:

- Very conservatively assuming a large number of backgrounds;
- Adapting our multi-hit strategy;
- Also shown in dashed the zero-background projections (consistent with my earlier calculation in the previous slide).

Zhen Liu

Good at Excluding. Are we good discovering?

I think so:

One can test if the excess events follow (this requires a reasonable modeling of backgrounds) the expected behavior:

$$\frac{d\sigma}{dE_r} = \pi \alpha^2 \epsilon^2 \frac{2E_\chi^2 m_e + E_r^2 m_e - E_r \left(m_\chi^2 + m_e (2E_\chi + m_e)\right)}{E_r^2 (E_\chi^2 - m_\chi^2) m_e^2}$$
$$\frac{d\sigma}{dE_r}\Big|_{E_\chi \gg m_\chi, m_e, E_r} \simeq \frac{2\pi \alpha^2 \epsilon^2}{E_r^2 m_e}.$$

Dark Jouney

Fast developing frontier:

Beyond beam production, we can have:

- Atmospheric production of MCPs (e.g., Plestid et al, 2002.11732; Du, Fang, Liu 2211.11469;)
- Local (and collected) abundance of MCP (a fraction of) DM, enabling new searches such as using ion-trap heating or cavity-like experiment

On the theory side, a few aspects to improve:

- Signal efficiency calculation (dark ELF);
- MCP production prediction improvement.

Part II: Dark Photons @ Dark SRF

Mainly based upon A. Romanenko et al, 2301.11512

Intro

There are many past, ongoing, and future searches.

Today, I share the pathfinder journey and results of one such effort and discuss its future.

Graham et al, Phys.Rev. D90 (2014) no.7, 075017 S. R. Parker et al, Phys. Rev. D 88, 112004 (2013) J. Hartnett et al, Phys. Lett. B 698 (2011) 346 J. Jaeckel and A. Ringwald, Phys. Lett. B 659, 509 (2008)

Zhen Liu

Dark Jouney

What is Dark SRF?

Light Shining through Wall (LSW)

Dark Jouney

CETUP* 2024

07/02/2024

35

We have the best SRF for High Energy Accelerators

Superconducting RF Cavities:

- Large fields
- High Quality

Superconducting Radio Frequency (SRF) cavity

Dark Jouney

SRF for Dark Photon

Power it up:
40 MV/m (26 J stored energy)
~10²⁵ photons
SM photon does not penetrate the superconducting wall.
But dark photons can!

$$\vec{E}'(\vec{r},t) \simeq -\epsilon \, m_{\gamma'}^2 \int_{V_{\rm emitter}} d^3x \, \frac{\vec{E}_{\rm cav}(\vec{x})}{4\pi |\vec{r}-\vec{x}|} \, e^{i(\omega t - k|\vec{r}-\vec{x}|)}$$

$$\vec{j}(\vec{r})e^{i\omega t} = -\frac{i\epsilon}{\omega} \left(m_{\gamma'}^2 \vec{E}' - \vec{\nabla}(\vec{\nabla} \cdot \vec{E}') \right)$$

Isolated receiver •High Q of 10¹⁰ (accumulate tiny signal power)

Zhen Liu

Dark Jouney

CETUP* 2024

SRF for Dark Photon: naïve parametrics

Signal Strength (stored energy) then should be proportional to $(m_{\gamma'} < \omega)$

 $S \propto \frac{m_{\gamma'}^4}{\omega^4} \epsilon^4 Q_{receiver} Q_{emitter} P_{emitter} |G|^2$

Background noise should be proportional to. e.g., thermal dominance $B \propto Temperature$

Background fluctuation controlled at

 $\Delta B \propto Temperature \begin{cases} t_{rungup} \\ t_{integration} \end{cases}$

Background noise also received contribution from possible cross-talks:

 $B \propto P_{emitter}$

Zhen Liu

Dark Jouney

CETUP* 2024

07/02/2024

 $t_{rungup} = \frac{Q}{\langle v \rangle} \sim 1 \ sec$

38

Real Cavity Configuration

Real geometry: high gradience

Hidden Photon field highly oscillatory (numerical stability)

$$\vec{E}_{\rm receiver}(\vec{r},t) = -\frac{Q_{\rm rec}}{\omega} \left[\frac{\int d^3x \vec{E}_{\rm cav}^*(\vec{x}) \cdot \vec{j}(\vec{x})}{\int d^3x |\vec{E}_{\rm cav}(\vec{x})|^2} \right] \vec{E}_{\rm cav}(\vec{r}) e^{i\omega t}$$

E Gradient Flow

E field strength

$$|G|^2 \equiv \frac{1}{\epsilon^4} \left(\frac{\omega}{m_{\gamma'}}\right)^4 \left[\frac{\int d^3x \vec{E}_{cav}^*(\vec{x}) \cdot \vec{j}(\vec{x})}{\omega \int d^3x |\vec{E}_{cav}(\vec{x})|^2}\right]^2$$

Zhen Liu

Dark Jouney

Dark SRF Pathfinder Runs

Pathfinder run(s) summary

It works!

- ✓ Design
- ✓ Tuner operation
- ✓ Microwave scheme for matching the frequencies
- ✓ Actual data first acquisition

Zhen Liu

Zhen Liu

Dark Jouney

2019 Run pictures

Zhen Liu

Dark Jouney

CETUP* 2024

Cavity frequency matching – Step 1

From now on, most measurement are shown in dBm (dB 10log(x), dBm=10log(x/mW).) Note that we are always in dBspace, 3dB = factor of 2 in linear space.

44

Dark Photon search! – (Step 2)

07/02/2024

45

Back to Step 5 = Step 1 – all in tune

Measurements and Results

Thermal run v.s. Search run

- Blue: Search run
 -151.8^{+0.16}_{-0.17} dBm
- Red: Thermal run
 -151.6^{+0.23}_{-0.25} dBm

(uncertainty driven by the integration time)

Exciting New Coverage

Our pathfinder run results already explore new territory in such a log-log space!

We've learned a lot about the system and published our first results and been developing many new future directions (as planned).

Zhen Liu

Dark Jouney

High-Q not always a blessing

I lied (oversimplified) quite a bit:

- High-Q is a double-sided sword
- Our pathfinder result did not benefit as Q^2 that we initially wanted
 - We are in a different limit that has not been explored before: $\frac{\omega}{q} \ll \delta \omega$ (the sources I will highlight soon)
 - Post the end-of-2019 pathfinder search run, we had to perform many validations- and cross-check runs between 2020-2022

A GHz device can be stable in kHz-level $(Q = 10^6)$, but many of its properties are not stable at subHz-level $(Q \ge 10^9)$.

Zhen Liu

Dark Jouney

To get a physical sense, Cavity size: ~20 cm Quality factor: 10^{10} Hence the line width: 0.13 Hz For Hz-level stability, one needs to ensure the cavity size does not change at the sub-nanometer level.

Many sources contribute to instabilities: temperature, bubbles, pressure change at the surface, etc.

CETUP* 2024

Emitter cavity frequency stability

Dedicated frequency stability runs, two effects:

- Frequency drift
- Microphonics

Emitter	Receiver
4.5×10^{10}	3.0×10^{10}
$1.8 imes 10^9$	4.5×10^{11}
$2.9 imes 10^{11}$	$1.3 imes 10^{10}$
$5.7~\mathrm{Hz}$	$3.0~\mathrm{Hz}$
$3.1~\mathrm{Hz}$	$3.1~\mathrm{Hz}$
	Emitter 4.5×10^{10} 1.8×10^{9} 2.9×10^{11} 5.7 Hz 3.1 Hz

Zhen Liu

Dark Jouney

The PSD of the Emitter and Receiver at a given moment

Zhen Liu

Dark Jouney

CETUP* 2024

07/02/2024

53

Data Visualization and checks (receiver fit; validation run 19, 2022)

We presented a very conservative limit

$$|G|^{2} \equiv \frac{1}{\epsilon^{4}} \left(\frac{\omega}{m_{\gamma'}}\right)^{4} \left[\frac{\int d^{3}x \vec{E}_{cav}^{*}(\vec{x}) \cdot \vec{j}(\vec{x})}{\omega \int d^{3}x |\vec{E}_{cav}(\vec{x})|^{2}}\right]^{2}$$

$$|G|^2 \to \frac{\omega^2}{\omega^2 + 4\delta_\omega^2 Q_{\rm rec}^2} |G|^2$$

- Frequency drift took as a constant frequency mismatch at 5.7 Hz ⊕ 3.0 Hz
 - These are drifts at 100 mins scale, our search is 30 mins scale;
 - One can live-monitor and take the data with no drifts.
- Microphonics modeled as constant frequency **mismatch** at $3.1 Hz \oplus 3.1 Hz$
 - Theoretically, it is a much less suppression as it reduces effective integration time. (Working on proper modeling.)

Essentially, modeled as searching off-resonance.

Zhen Liu

Dark Jouney

Modeling Microphonics

H. Cui, S. Henrich, S. Kalia, ZL, finalizing.

When one controls the drifting effect (either use stiffer receiver cavity or realign the frequency every few mins), the dominant effect is microphonics.

Our proper modeling show that it impact on SNR is about 40% suppression instead of 10^-5 suppression, restoring my original estimation but with needed search protocol updates.

56

Zhen Liu

CETUP* 2024

Near (or far?) Future

- Improving noise isolation and control into few photon limits;
- Improve Q (seems require careful discussion)
- Phase-sensitive readout
- Off-the-shelf cavities →better designed and treated ones
 - New design

Zhen Liu

• New search protocol 1

Other and related activities

- Dark photon DM search (SQMS <u>2208.03183</u>; J. Shu et al <u>2305.09711</u>);
- Axion LSW validation and search;
 - Single cavity design
 - Double cavity multi-mode design
 - Double cavity plus conversion region design
- Axion DM search;
- Gravity Wave validation and search;
- Millicharged particle search;
- Photon mass constraints;
 - See many recent studies, and also partial summaries in SQMS SRF paper: 2203.12714

Zhen Liu

Dark Jouney

CETUP* 2024

Outlook

- Fun journey to the unknown and physics at different scales
- Millicharged particles:
 - New Search Strategy proposed and results obtained
 - Future runs with liquid Argon Experiments
 - New Search Strategy proposed and results obtained
 - Future runs with CCD tech
- Dark Photons:
 - Designed new SRF cavity-based LSW experiments;
 - Covered new parameter regions in the log-log space;
 - Learnt & learning to handle ultrahigh Q opportunities;
 - Establishing and developing schemes for robust tests;
- An active program ahead:
 - Many planned steps improve the results significantly;
 - Many possible theory research directions to improve the results & treatments (interested parties highly welcome!);
 - Many "adjacent" exploration and searches possible;

Thank you!

Zhen Liu

CETUP* 2024

(Milli)Charges through Matter

angular deflection

- mCP's do the same, but less so. Below detection threshold.
- Above threshold individual coulomb scatters

Dark Jouney

CETUP* 2024

Matter Effects

- En route to a detector, mCPs travel through ~240 meters of dirt.
- Energy loss is negligible in region of interest.
- A random walk of soft scatterings (off nuclei) leads to small **angular deflection**

$$\Delta \theta_{\chi} \sim \langle \theta_{\chi} \rangle \sqrt{N_{\rm col}} = \begin{array}{l} \text{average} \\ \text{deflection per} \times \begin{array}{l} \text{sqrt $\#$ of} \\ \text{collision.} \end{array}$$
$$\Delta \theta_{\chi} \sim 2 \times 10^{-3} \left(\frac{5 \text{ GeV}}{E_{\chi}} \right) \left(\frac{\epsilon}{10^{-2}} \right) \left(\frac{L_{\rm dirt}}{500 \text{ meters}} \right)^{1/2}$$

The mCPs point back to the target.

Zhen Liu⁶¹

Dark Jouney

CETUP* 2024

LArTPC at work

m.i.p. at 500 V/cm: ~ 60,000 e/cm ~ 50,000 photons/ Charged particles in LAr produce free <u>ionization electrons</u> and <u>scintillation light</u>

Ionization charge <u>drifts in a</u> <u>uniform electric</u> field towards the readout wire-planes

Electron drift time ~ ms

Scintillation light fast signals from LDSs give event timing

Ywtreplene www.sikenns
Digitized signals from the wires are collected [time of the wire pulses gives the drift coordinate of the track and amplitude gives the deposited charge]

W write plane waveforms

entre Wire

Liquid Argon TPC

Charged Particl

Zhen Liu

Dark Jouney

Zhen Liu

Particle Physics-Astrophysics-Cosmology Webinar (PAC Webinar-51)

Journey with Sourced Millicharged Particles and Dark Photons

A lecture by Zhen Liu

Speaker:

Zhen Liu is currently an Assistant Professor at the University of Minnesota. Zhen received his Ph.D. from the University of Pittsburgh in 2015. After completing his Ph.D., Zhen conducted postdoctoral research in the Theory Department at Fermi National Accelerator Laboratory between 2015-2018 and Maryland Center for Fundamental Physics at the University of Maryland between 2018-2020. Zhen' s research has a broad scope on phenomenology in high energy physics, spanning from new physics searches at collider facilities, such as the LHC and various future colliders (CEPC, muon colliders), neutrino facilities, such as the DUNE and ArgoNeuT experiment, as well as small-scale experiments, such as dark SRF, Windchime.

Abstract:

Hidden U(1) symmetries are widely prevalent across numerous new physics models and have garnered significant attention. These symmetries give rise to intriguing testable phenomena, such as "dark photons" as the force mediators and "millicharged" particles representing the matter content. A diverse range of physics experiments and search strategies have been developed to investigate these phenomena. In this talk, I will discuss my recent work in exploring these elusive particles, covering both theoretical foundations and experimental results. I will focus on the unique aspects of controlled search approaches, where we actively source the fields under investigation and discuss the future prospects in this exciting research area.

2023.06.07 | 10:00 AM | ZOOM: 831 7344 3588 | PASSCOED: 001690

南京师范大学理论物理研究所 彭桓武科教合作中心 天体物理与前沿物理交叉中心

2024

