Dark Matter Rain

Joshua Berger Colorado State University w/ J. Acevedo, P. Denton See Monday's arXiv

June 28, 2024

CETUP* 2024

Direct Detection & WIMP Paradigm

What is DD Looking For?

Local dark matter in Milky Way halo

What is DD Looking For?

Local dark matter in Milky Way halo

What is DD Looking For?

Local dark matter in Milky Way halo

Small nuclear kinetic energy 10s of keV (very non-relativistic)

Beyond the WIMP?

DM stops due to Earth overburden/Multiple scattering

Beyond the WIMP?

4

Modify the Interactions Themselves?

This Talk: Boosting Dark Matter

What if (some of) the dark matter flux at $v \gg 10^{-3}$?

- New detection opportunities
 - ▶ Potentially harness larger volume, higher threshold detectors
- New backgrounds
 - ▶ Learning to live in the neutrino fog prematurely
- Extended "easily" accessible mass range
 - ▶ Light, but high boost DM is visible if possible

Some Sources of DM Flux

Some Sources of DM Flux

Step 2: A location

Searches Ongoing!

Search for CR boosted dark matter scattering off protons

A New Mechanism for Boosting

(1) A very light boson, roughly $R_\oplus \ll m^{-1} \ll 1 \; A.U.$

$$\mathcal{L} = -g_{\chi} \, \phi \, \overline{\chi} \chi - g_{\rm SM} \, \phi \, \overline{f} f$$

or

$$\mathcal{L} = -g_{\chi} \, A'_{\mu} \, \overline{\chi} \gamma^{\mu} \chi - g_{\rm SM} \, A'_{\mu} \, \overline{f} \gamma^{\mu} f$$

(2) A short range interaction

$$\mathcal{L}=rac{1}{\Lambda^2}\left(\overline{f}\gamma^\mu f
ight)\left(\overline{\chi}\gamma_\mu\chi
ight)$$

Constraints on Fifth Force

In our notation: $g_{\rm SM} \lesssim 8 imes 10^{-25}$

Dark Matter Self-Interactions

Clowe et. al.: Astrophys.J.648:L109-L113,2006

Davoudiasl: PRD96, 095019 (2017)

• Bullet cluster self-interaction limit: $\sigma \lesssim 0.1 \text{ cm}^2/\text{g}$

• Implies
$$g_\chi \lesssim 4 imes 10^{-6} \, (m_\chi/{
m MeV})^{3/4}$$

Range of Interest

- On the low end: range longer than size of Earth
 - ► Avoid Yukawa suppression of interactions
- \blacktriangleright On the high end: range shorter than 1 A.U.
 - ► Avoid potential from Sun dominating over Earth locally
- ▶ In principle, can go longer range, but distribution distorted
- ▶ For comparison: dwarf spheroidals start at about 2×10^7 A.U.

Attractive Long Range Force

Earth sets up a potential

$$\Phi = -\frac{g_{\chi} g_{\text{SM}} N_{\oplus}}{4\pi r} e^{-m_{\phi} r} = -\frac{\alpha}{r} e^{-m_{\phi} r} \text{ or } V^0 = -\frac{\alpha}{r} e^{-m_{A'} r}$$

► Particle Lagrangian:

$$L = -(m + \Phi) \sqrt{1 - v^2}$$
 or $L = -(m + U^{\mu} V_{\mu}) \sqrt{1 - v^2}$

► Energy:

$$E = \frac{m + \Phi}{\sqrt{1 - v^2}}$$
 or $E = \frac{m}{\sqrt{1 - v^2}} + V^0$

► Angular momentum:

$$\mathbf{L} = E \mathbf{r} \times \mathbf{v}$$
 or $\mathbf{L} = \gamma \, m \mathbf{r} \times \mathbf{v}$

Relativistic Infall: Vector Case

• Energy is conserved^{*}, so $E \approx m$ far away is the total energy

$$\Xi = \gamma(r) m + V^0(r) \implies \gamma(r) \approx 1 - \frac{V^0(r)}{m} \approx 1 + \frac{\alpha}{mr}$$

Also want maximum impact parameter to hit the Earth:

$$b_{\max} = \frac{R_{\oplus}}{u} \sqrt{\left(\frac{E - V_0(R_{\oplus})}{m_{\chi}}\right)^2 - 1} = R_{\oplus} \gamma \left(\frac{v_{\chi}}{u}\right)$$

From maximum impact parameter: maximum angular momentum

$$L_{\max} = b_{\max} \, m_\chi \, u = R_\oplus \, m_\chi \, \gamma \, v_\chi$$

Joshua Berger

I

Relativistic Infall: Scalar Case

Similarly use energy conservation:

$$E = \gamma(r) [m + \Phi(r)] \implies \gamma(r) \approx \frac{E}{m + \Phi(r)} \approx \frac{1}{1 - \frac{\alpha}{mr}}$$

• Boost naively diverges at
$$r \approx m/\alpha!$$

- Revisit divergent boost shortly
- Maximum impact parameter

$$b_{\max} = \frac{R_{\oplus} \left(m_{\chi} + \Phi(R_{\oplus})\right)}{m_{\chi} u} \sqrt{\left(\frac{E}{m_{\chi} + \Phi(R_{\oplus})}\right)^2 - 1} = R_{\oplus} \left(\frac{v_{\chi}}{u}\right)$$

Maximum angular momentum differs by a boost factor!

$$\mathcal{L}_{\mathsf{max}} = \mathit{b}_{\mathsf{max}} \, \mathit{m}_{\chi} \, \mathit{u} = \mathit{R}_{\oplus} \, \mathit{m}_{\chi} \, \mathit{v}_{\chi}$$

Radiation Losses

- $\blacktriangleright~$ If γ becomes too large: radiation of mediators becomes important
- ▶ Particularly relevant for the scalar case
- ► Apply Larmor's formula:

$$rac{d p^{\mu}_{
m rad}}{d au} = - \mathcal{Q} \, a^{\lambda} \, a_{\lambda} \, U^{\mu}, \qquad \mathcal{Q} = rac{g_{\chi}^2}{6 \, \pi^2} \, \, {
m or} \, \, rac{g_{\chi}^2}{12 \, \pi^2}$$

Write energy loss as a function of (large) boost

$$\Delta E_{
m rad} pprox \mathcal{Q} \, rac{m_{\chi}}{lpha} \left\{ egin{array}{c} rac{\gamma^5}{5}, & {
m vector} \ rac{\gamma^3}{3}, & {
m scalar} \end{array}
ight.$$

- Scalar case: can lose kinetic energy down to $m_{\rm eff}(r) = m + \Phi(r)$
- Radiation relevant for very large boosts, above at least 10¹⁰

Boost at Earth

- Scalar case: need to sit on narrow line to get large boost
- ▶ Vector case: wide open possibilities

Centrifugal Barrier?

- ▶ Potential falls off exponentially
- At some point $L^2/(2 m r^2)$ dominates and a barrier forms

Barrier height is tiny... but so is kinetic energy

Should We Be Worried?

- ▶ Can solve numerically for turning radius and barrier height
- ▶ But we also have an analytic approximation

$$rac{dV_{ ext{eff}}}{dr}\simeq rac{L^2}{m_\chi\,r^3}+rac{lpha\,m_{\phi,\mathcal{A}'}}{r}\,e^{-m_{\phi,\mathcal{A}'}\,r}=0$$

• Neglect small terms in
$$1/(m_{\phi,A'} r)$$

$$\blacktriangleright$$
 Naively good at the $\sim 10\%$ level

Result:

$$rac{b \ m_{\phi,\mathcal{A}'}}{2} \lesssim \sqrt{rac{W_{-1}^3(-eta)}{W_{-1}(-eta)+1}}, \qquad eta = rac{L}{2} \ \sqrt{rac{m_{\phi,\mathcal{A}'}}{lpha \ m_\chi}}$$

• At large $m_{\phi,A'}^{-1}$: impact parameter limited

▶ Below a range of 1 AU: parameter space is open

Maximum Impact Parameter

- ► Larger impact parameters ⇒ larger flux
- Vector case again more promising

Dark Matter Flux

 Get differential flux at a radius far away then change to conserved angular momentum

$$d\mathcal{F} = \pi \, \frac{f(u)}{u} \, du \, dJ^2$$

▶ Flux per unit area differs for vector and scalar cases

$$\frac{d\mathcal{F}}{dA} \simeq \frac{1}{4} n_{\chi} v_{\chi}^2 \left\langle \frac{1}{u} \right\rangle \times \begin{cases} \gamma^2 & \text{(vector)} \\ \\ \\ 1/2 & \text{(scalar)} \end{cases}$$

• Either way, a Sommerfeld-like enhancement, but extra γ^2

Toward Detection Prospects

• Event rate can be written in terms of nuclear interaction $\sigma_{\chi i}$:

$$N_{\text{event}} = T n_{\chi} \sum_{i} N_{i} \sigma_{\chi i} v_{\chi}^{2} \left\langle \frac{1}{u} \right\rangle \times \begin{cases} \gamma^{2} & (\text{vector}) \\ \\ 1 & (\text{scalar}) \end{cases}$$

- How do we model cross section?
- ▶ Focus beyond coherent regime and use neutrino Monte Carlo code

Modeling Interactions

► Model using GENIE

Implementation of resonant scattering forthcoming

JB: 1812.05616 JB, Orr: Forthcoming

A Slate of Experiments to Look At

Lower threshold

- LZ & Other DD: few keV KE threshold, scintillation + TPC
- JUNO: \sim 0.5 MeV KE threshold, scintillation detector
- DUNE: \sim 10s MeV KE threshold, LArTPC + scintillation
- Super-K/Hyper-K: \sim 100s MeV KE hadronic, water Cherenkov
- DeepCore: \sim 10 GeV KE threshold, ice Cherenkov

What Do Experiments See?

▶ DUNE: stable charged particles cross 10 wires

• Water Cherenkov: boost $\gamma > n$

Experiment	μ^{\pm} (MeV) π^{\pm} (M	eV) p (Me\	/) e [±] (№	(MeV) γ (MeV)
DUNE	35	35	80	30	30
Super-K/Hyper-K	55	75	485	3	3
JUNO	0.5	0.5	0.5	0.5	0.5

Ugh...Backgrounds

- Trickiest background: atmospheric ν scattering
- ▶ Split into two neutrino energy regimes, below and above 10 GeV
- Low energy: use Bartol fluxes at Soudan (DUNE/LZ) and Kamioka (Super-K/Hyper-K/JUNO)
- High energy: nearly location independent, just use high energy flux at Kamioka
- Model scattering using GENIE

Barr et. al.: PRD70:023006,2004 Andreopoulos et. al.: NIM A614:87-104,2010, arXiv:1510.05494

Kinematic Distributions: Angular

- ▶ Reconstruct total momentum of all visible particles above threshold
- θ : angle of that momentum w.r.t. vertical
- Two cut boxes: $|\cos \theta| > 0.8$, $|\cos \theta| > 0.9$

Kinematic Distributions: Energy

- ▶ Reconstruct total energy of all visible particles above threshold
- Two cut boxes: E > 20 MeV, E > 10 GeV
- ▶ DeepCore/IceCube: Just cut on DM energy above 10 GeV/100 GeV

Results: Vector Mediator

Assume 30% background normalization systematic

• Estimated 2σ sensitivities

Results: Scalar Mediator

Assume 30% background normalization systematic

• Estimated 2σ sensitivities

The Future

- Large volume neutrino experiments can have interesting dark matter signals in addition to the flagship neutrino physics program
- Dark matter rain is a scenario in which all the dark matter is boosted and potentially visible at large experiments
- Some future directions:
 - ▶ What happens at longer range?
 - ▶ What happens in scalar case when infinite boost is approached?