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Q

A One natural mechanism via which energy density 
can be transferred from matter to radiation is 
particle decay.

● The exponential decay of a single matter species, which occurs over a 
relatively short time period, is insufficient for achieving stasis.

● However, a tower of matter states ϕℓ, where ℓ = 0, 1, 2, … , N - 1, whose 
decay widths Γℓ and initial abundances        scale across the tower as a 
function of their mass mℓ can indeed give rise to a pump that 
compensate for the effect of cosmic expansion over a extended period.
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String theory (string moduli, axions, etc.)

Theories with extra spacetime dimensions (KK towers)

Scenarios which lead to the production of primordial black holes 
with an extended mass spectrum (the black holes themselves)

● Such towers are a facet of numerous BSM-physics scenarios including...

● The modified cosmological histories associated with stasis can affect the 
evolution of scalar and tensor perturbations.
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A Concrete Realization

● Let’s consider a tower of N such states  states with...

Masses Decay Widths Initial Abundances

● Towers of states with mass spectra of this form arise naturally in many 
extensions of the Standard Model.

KK excitations of a 5D scalar:

Bound states of a strongly-
coupled gauge theory:

● Decay through contact operators 
of dimension d implies a scaling:

● Scaling of initial abundances 
depends on how they’re 
generated:

Misalignment production

Thermal freeze-out

Universal inflaton decay

...

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛21]



  

The Emergence of Stasis
● In BSM scenarios of this sort, stasis emerges generically, with minimal 
additional assumptions.

● The matter and radiation abundances during 
stasis turn out to depend on the model 
parameters α, γ, and δ. 

Parameter 
ChoicesStasis Era

Entrance Exit

Stasis Abundances



  

Stasis as a Global Attractor

State-Space Trajectories ΩM vs. t For Different ΓN-1/H(0) 

● Perhaps even more importantly, achieving cosmological stasis does 
not require a fine-tuning of the initial conditions for ΩM and H – or, 
alternatively, for Ωm and its time-average          – or for the ratio ΓN-1/H(0).

● In fact, stasis is a global attractor in the sense that ΩM and Ωγ will 
evolve toward their stasis values regardless of what these initial 
conditions are.
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● Density perturbations: Such 
perturbations evolve differently than 
they do in the standard cosmology, 
since weff ≠ 1/3 during stasis.  
Possible implications for small-
scale structure.
[Dienes, Huang, Heurtier, Hoover, Paulsen, Tait, BT ‛24]

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛22]
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● A stasis can also arise involving 
more than two components – 
for example, vacuum energy, 
matter, and radiation – can also 
arise in BSM contexts.  Such 
stases also turn out to be global 
attractors. [Dienes, Huang, Heurtier, Tait, BT ‛23]

Triple Stasis Involving Matter, 
Radiation, and Vacuum Energy

Lucien Heurtier Fei Huang
● A set of axion-like scalar fields whose background values transition 
from overdamped to underdamped oscillation can give rise to stasis… 
and that’s what I’ll be focusing on for the remainder of this talk!
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following:

● Such a stasis, as we’ll see, would be characterized by an effective 
equation-of-state parameter between that of vacuum energy (wΛ = -1) 
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● Moreover, stases involving dynamical scalars give rise to some 
phenomena not seen in other realizations of stasis which could 
potentially useful for addressing fundamenal questions in cosmology. 

 Is it possible to achieve a prolonged epoch of 
cosmological stasis from a tower of such scalars?Q

[Dienes, Huang, Heurtier, Tait, BT ‛24]



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

.



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

.

Equation of Motion



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

.

Equation of Motion

Energy density:

Pressure:



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

.

Equation of Motion

Energy density:

Pressure:

Equation of State



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

.

Equation of Motion

Energy density:

Pressure:

Equation of State

● We’ll focus on the case where at time t(0), this field is displaced from its 
potential minimum by ϕ(0), but has negligible initial velocity ϕ(t(0)) ≈ 0.



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

● We’ll focus on the case where at time t(0), this field is displaced from its 
potential minimum by ϕ(0), but has negligible initial velocity ϕ(t(0)) ≈ 0.

.

● We’ll also assume that its energy density                 is subdominant and 
has negligible impact on the Hubble parameter H.

Equation of Motion

Energy density:

Pressure:

Equation of State



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

● We’ll focus on the case where at time t(0), this field is displaced from its 
potential minimum by ϕ(0), but has negligible initial velocity ϕ(t(0)) ≈ 0.

.

● We’ll also assume that its energy density                 is subdominant and 
has negligible impact on the Hubble parameter H.

● Rather, the energy density is dominated 
by a perfect fluid with constant equation-
of-state parameter w.

Equation of Motion

Energy density:

Pressure:

Equation of State



  

Warm-Up: A Single Scalar
● To set the stage, let’s recall how the homogeneous zero-mode of a 
single scalar field ϕ of mass m with a quadratic potential V(ϕ) evolves in 
a flat FRW universe. 

● We’ll focus on the case where at time t(0), this field is displaced from its 
potential minimum by ϕ(0), but has negligible initial velocity ϕ(t(0)) ≈ 0.

.

● We’ll also assume that its energy density                 is subdominant and 
has negligible impact on the Hubble parameter H.

● Rather, the energy density is dominated 
by a perfect fluid with constant equation-
of-state parameter w.

Equation of Motion

,   where

Energy density:

Pressure:

Equation of State



  

Warm-Up: A Single Scalar

10−1 100 101

t̃

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

φ/φ(0)

wφ

Scalar in a Fixed Background (w = 1/3)

3H = 2m

.

Equation of Motion Equation of State

Approximate Solution



  

Warm-Up: A Single Scalar
● At early times, when the Hubble-
friction term is large, ϕ is overdamped 
and slowly rolls down its potential.

10−1 100 101

t̃

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

φ/φ(0)

wφ

Scalar in a Fixed Background (w = 1/3)

Over-
damped

3H = 2m

.

Equation of Motion Equation of State

Approximate Solution



  

Warm-Up: A Single Scalar
● At early times, when the Hubble-
friction term is large, ϕ is overdamped 
and slowly rolls down its potential.

10−1 100 101

t̃

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

φ/φ(0)

wφ

Scalar in a Fixed Background (w = 1/3)

Over-
damped

3H = 2m

.

Equation of Motion Equation of State

Approximate Solution



  

Warm-Up: A Single Scalar
● At early times, when the Hubble-
friction term is large, ϕ is overdamped 
and slowly rolls down its potential.

10−1 100 101

t̃

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

φ/φ(0)

wφ

Scalar in a Fixed Background (w = 1/3)

Under-
damped

Over-
damped

3H = 2m

.● However, when H(t) drops below 2m/3, 
the field becomes underdamped and 
oscillates around the minimum of V(ϕ).

Equation of Motion Equation of State

Approximate Solution



  

Warm-Up: A Single Scalar
● At early times, when the Hubble-
friction term is large, ϕ is overdamped 
and slowly rolls down its potential.

10−1 100 101

t̃

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

φ/φ(0)

wφ

Scalar in a Fixed Background (w = 1/3)

Under-
damped

Over-
damped

3H = 2m

.

● wϕ(t) oscillates rapidly at late times, 
but averages to                over 
sufficiently long timescales.

● However, when H(t) drops below 2m/3, 
the field becomes underdamped and 
oscillates around the minimum of V(ϕ).

Equation of Motion Equation of State

Approximate Solution



  

Warm-Up: A Single Scalar
● At early times, when the Hubble-
friction term is large, ϕ is overdamped 
and slowly rolls down its potential.

10−1 100 101

t̃

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

φ/φ(0)

wφ

Scalar in a Fixed Background (w = 1/3)

Under-
damped

Over-
damped

3H = 2m

.

● wϕ(t) oscillates rapidly at late times, 
but averages to                over 
sufficiently long timescales.

● However, when H(t) drops below 2m/3, 
the field becomes underdamped and 
oscillates around the minimum of V(ϕ).

Equation of Motion Equation of State

Approximate Solution

Behaves like massive matter



  

Tower of Scalars
● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 



  

Tower of Scalars
● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 

● Consider a mass spectrum (motivated by KK towers):



  

Tower of Scalars
● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 

● Consider a mass spectrum (motivated by KK towers):

● For simplicity, we’ll assume no couplings exist between the different ϕℓ, 
and that each field has its own quadratic potential Vℓ(ϕℓ).



  

Tower of Scalars
● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 

● Consider a mass spectrum (motivated by KK towers):

● For simplicity, we’ll assume no couplings exist between the different ϕℓ, 
and that each field has its own quadratic potential Vℓ(ϕℓ).

For Each Field



  

Tower of Scalars
● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 

● Consider a mass spectrum (motivated by KK towers):

● For simplicity, we’ll assume no couplings exist between the different ϕℓ, 
and that each field has its own quadratic potential Vℓ(ϕℓ).

For Each Field

● We’ll also assume (for the moment) that there’s no background energy 
component: the collective energy density of the ϕℓ dominates the 
universe. 
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● Now let’s consider the case in which the universe comprises a tower of 
N such scalars ϕℓ, where the index ℓ = 0, 1, 2, …, N – 1 labels these states 
in order of increasing mass. 

● Consider a mass spectrum (motivated by KK towers):

● For simplicity, we’ll assume no couplings exist between the different ϕℓ, 
and that each field has its own quadratic potential Vℓ(ϕℓ).

N “copies” of this

Let’s see what the cosmology of such a 
tower of scalar-field zero modes looks like!

● The system of (coupled) field-evolution and Friedmann equations that 
describes the evolution of the ϕℓ and H in this case is therefore...
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Initial Conditions
● All that now remains is to specify the initial conditions for our scalars. 

● However, we still need both an overall mass scale for the 
displacements and to know how they scale with ℓ across the tower.

● We assume a power-law scaling for the initial abundances of the form

● For a given mass spectrum, the overall 
scale of the abundances can be 
parameterized by the ratio               , or, 
equivalently, by the ratio H(0)/mN-1.  

● For simplicity (and because it’s consistent with many standard 
abundance-generation mechanisms for fields of this sort – e.g., vacuum 
misalignment ), we once again take                     for all of the ϕℓ.
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● At any given time t, there is a 
critical value ℓc of ℓ below which 
the ϕℓ remain overdamped.

● Thus, we can divide the tower 
into two regions, which we treat 
as different energy components:

Slow-roll component: 
states with 3H(t) ≥ 2mℓ.

Oscillatory component: 
states with 3H(t) ≤ 2mℓ.

The Question:

Can we achieve a stasis 
between these slow-roll and 

oscillatory cosmological 
energy components, which act 

like vacuum energy and 
matter, respectively?

Dynamical Evolution
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● In stasis, the effective equation-of-state parameter                for the 
universe as a whole is constant by assumption.

● Since            must be constant during stasis, the equation of motion for 
each ϕℓ must have exactly the same form as in the single-field case.

● Thus, so does the solution:

● In the regime in which the density of states per unit mass is large and we 
can approximate sums over ℓ with integrals over a continuous mass 
variable m, the energy density of the slow-roll component is

Only time-dependence

Constant in stasis, since: H = κ/(3t)

● By definition, stasis requires: Towers which satisfy this 
relation give rise to stasis.  

For any δ, this corresponds to

Constant



  

Effect of Initial Conditions
● Unlike in previous realizations of stasis, the stasis abundances ΩSR and 
Ωosc depend on the initial conditions for the scalar tower.
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Effect of Initial Conditions
● Unlike in previous realizations of stasis, the stasis abundances ΩSR and 
Ωosc depend on the initial conditions for the scalar tower.

● In particular, ΩSR and Ωosc are sensitive to the ratio                which 
parametrizes the overall scale of the initial zero-mode displacements.
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● Unlike in previous realizations of stasis, the stasis abundances ΩSR and 
Ωosc depend on the initial conditions for the scalar tower.

● In particular, ΩSR and Ωosc are sensitive to the ratio                which 
parametrizes the overall scale of the initial zero-mode displacements.
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● However, the outcome depends on the relationship between wBG and the 
equation-of-state parameter w the tower would have had during stasis if 
the background component weren’t present.



  

Background Components and Tracking
● The tracking phenomenon which arises in situations in which wBG < w 
has not been observed in other realizations of stasis. 
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● These results provide insight about how the universe might enter into – 
or exit from – an stasis epoch involving dynamical scalars.

wBG > w
(background dies away)

wBG < w
(tower tracks background)



  

Background Components and Tracking
● It’s also noteworthy that this tracking behavior is quite robust and 
persists even when wBG experiences an abrupt shift (as might occur, 
for example, as the result of a phase transition).
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parameter       continues to evolve toward the new value of wBG after the 
shift, regardless of whether this shift is positive or negative. 
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● Indeed, as long as wBG remains below w, the tower’s equation-of-state 
parameter       continues to evolve toward the new value of wBG after the 
shift, regardless of whether this shift is positive or negative. 

● Moreover,       tracks wBG even in the regime in which wBG evolves 
continuously with time.
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accelerated expansion during stasis.

● Since such a stasis epoch can endure for well over                e-folds of 
expansion, it can in principle solve the horizon and flatness problems.

Can such a stasis furnish a framework for cosmic inflation?Q

● This is an intriguing possibility for a number of reasons.

1 Complicated scalar potentials are in principle not required in order 
to achieve consistency with CMB data. 

2 Any equation-of-state parameter within the 
range – 1 < w ≤ -1/3 can be obtained in a 
straightforward manner. 

3 A “graceful exit” from inflation is built into this 
scenario.  It ends with the ϕℓ behaving like 
massive matter.  Reheating can be achieved 
in principle via their subsequent decays.
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...satisfy applicable constraints on non-Gaussianities and isocurvature.

...eventually give way to a period of reheating 
(presumably from the decays of the oscillating 
ϕℓ after stasis ends).

● Any model of inflation along these lines would of course also need to...

This is an intriguing possibility – and one that 
warrants further exploration!
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● In this way, stasis inflation 
features an “undertow” which 
suppresses the abundances of 
unwanted relics and isocurvature 
contributions from the heavier ϕℓ.

Critical-damping times

● The abundance Ωℓ of each ϕℓ initially rises while it’s slowly rolling, but 
then falls precipitiously once its critical-damping time is reached.



  

Summary

● In the presence of an additional background component with equation-
of-state parameter wBG, the tower exhibits a tracking behavior in which 
its own equation-of-state parameter evolves toward wBG. 

● Stable, mixed-component cosmological eras – i.e. stasis eras – are 
indeed a viable cosmological possibility – and one that can arise 
naturally in many extensions of the Standard Model. 

● Stasis itself is an attractor in these systems, but several fundamental 
characteristics of the stasis epoch toward which the universe evolves 
depend on the initial conditions.

● A tower of scalar fields which undergo a transition from overdamped to 
underdamped evolution can give rise to stasis.
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