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Motivation

• The evidence for dark matter (DM) is substantial and varied, yet we know 
little about its fundamental properties.

• Among the few things we do know is that DM is stable on cosmic time scales.

• New stabilizing symmetry for DM (e.g. WIMP DM),

2

• The (meta)stability of DM may provide an important clue to its fundamental 
nature, e.g., 

• DM has feeble interactions and/or is very light (e.g., axion DM),

• As in these examples, the origin of DM stability may suggest correlated 
observational signals.

• Here I wish to explore the idea that DM is long-lived in our Universe as a 
consequence of the Pauli exclusion principle.
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Basic setup

• DM is a light scalar field , which interacts with a lighter Majorana fermion ϕ ψ
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−ℒ ⊃
1
2

m2
ϕ ϕ2 + ( 1

2
mψ ψ ψ +

1
2

y ϕ ψ ψ + h . c . )
• The  decay rate in vacuum isϕ → ψ ψ

     for    Γϕ ≃
y2mϕ

16π
mψ ≪ mϕ

Γϕ < H0 (τϕ > τU)Γϕ < H0 (τϕ > τU)

mψ ≪ mϕ

• Naively,  decays rapidly on cosmological 
time scales unless the Yukawa coupling is 
minuscule .

ϕ

Naively,  decays rapidly hereϕ
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• Suppose at some early redshift  there is a population of non-relativistic 
particles, , and negligible population of  particles. Then  decays via  . 

z = zini ϕ
nϕ ≠ 0 ψ ϕ ϕ → ψ ψ

• If the decay is fast, the states of  in a spherical shell of momentum around 
 are quickly occupied (“Fermi shell”). The effective decay rate is then

ψ
Eψ = mϕ/2

Γ eff
ϕ = Γϕ (1 − 2 fψ [Eψ = mϕ/2])

Here  is the fermion phase space distribution function. This says that  cannot 
increase beyond , at which point the decay is Pauli blocked.

fψ fψ
fψ = 1/2

• Since the Universe expands, the  energy redshift as .  Thus, the original 
shell shrinks while the DM decays continuously replenishes the shell near 

. For ,  forms a Fermi sea, with Fermi energy  :

ψ E ∝ a−1

Eψ = mϕ/2 z ≪ zini ψ EF = mϕ/2

fψ =
1
2

Θ [ mϕ

2
− p] Θ [p −

mϕ

2
1 + z

1 + zini ] →
1
2

Θ [ mϕ

2
− p]

DM stability from Pauli blocking
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DM stability from Pauli blocking
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• The energy transferred to the Fermi sphere is negligible if 

ρϕ ≫ ρψ = gψ ∫
d3pψ

(2π)3
Eψ fψ =

gψ

2π2 ∫
EF

0
dEψE3

ψ
1
2

=
gψE4

F

16π2
=

gψm4
ϕ

256π2

• If  is to account for DM, this bound 
should at least be satisfied today, with 

 [  ]

ϕ

Ωϕ,0 ≃ 0.26 ρϕ ∼ (2 meV)4

 stable due to Pauli 
Blocking

ϕ

Γϕ < H0
• This leads to the bound mϕ ≪ 0.01 eV
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• Thus far we have shown that scalar DM is stable against decays due to Pauli blocking, 
provided it is lighter than about 10 meV. However, we have not accounted for 
scattering processes.

• The scalar condensate may still “evaporate” if 2-to-2 scattering processes are fast. 

• Thus we must therefore study the evolution of the scalar-fermion fluid accounting for 
decay / inverse decay and scattering involving  .ϕc, ϕth, ψ

Thermalization and Evaporation

ϕc

• For large enough couplings , we anticipate that the scalar-fermion system will 
eventually reach a quasi-equilibrium state comprised of a DM condensate  and 
a thermal dark radiation component .

y
ϕc

(ϕth, ψ)

ϕ

ψ

ψ ψ ψ

ϕψ

ψ

ψ

ψ

ϕc

ϕc ϕc

ϕc ϕ

…

ψ

ψ
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Approach to thermalization

• At early times, after  starts oscillating, parametric resonance (see below) populates 
 with number density  and typical particle momentum of  .

• The decay-inverse decay   is isotropic in the parent rest frame, but in the 
cosmic frame the decay products will have directions with angle  . 

• To isotropize particle momenta requires a random walk of  reactions such that 
 .

• The time scale for isotropization is

 

• At this time scale, the system consists of the nearly homogeneous and isotropic 
dark radiation plasma and the DM condensate

ϕ
ψ 𝒪(m3

ϕ) ptyp ≳ mϕ

ϕ ↔ ψ ψ
θ ∼ 1/γ ∼ mϕ/ptyp

N
θ2

eff ≈ (mϕ/ptyp)2N ≈ 1

tiso ≃ Γ−1
ϕ × N ≈

y2mϕ

16π (
mϕ

ptyp )
2

−1
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• To study the evolution of the dark sector we employ the Boltzmann equations:

• Solving directly for the phase space distributions is challenging (coupled partial 
integro-differential equations).  To make progress, we make the following ansatz:

Boltzmann equations

Condensate Thermal component (equilibrium form)
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• With the ansatz above we study the evolution of the bulk quantities (number 
densities, energy densities, pressure):

• We can isolate the condensate and thermal components via a projection operator 
 that excludes a small region around  in the integrals:̂P pϕ = 0

Integrated Boltzmann equations

Condensate

Thermal 
component
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• With the projection operators, we can write the Boltzmann equations for the 
number and energy densities:

Integrated Boltzmann equations

• Summing the equations for the energy densities, we have

• The condensate (thermal components) are non-relativistic (typically relativistic), 
leading to

Condensate Thermal component
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• Unintegrated collision term for decay / inverse decay:

Collision term example - DM decay / inverse decay

• Use projector to isolate condensate and thermal pieces:

• Condensate  :ϕc

• The integrals can be carried out analytically:

effective DM decay rate 
advertised earlier

• The phase space factor is proportional to  and biases , at which point 
the DM condensate decay is Pauli blocked. 

emϕ/2T − eμψ /T μψ → mϕ /2
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Collision terms:

ϕc ϕ

ψ

ψ

ψ ψ

ϕψ

ψ

ψ

ψ

ϕc

ϕc ϕc

ϕc ϕ

ψ

ψ

~   μψ → mϕ/2

~   μψ → mϕ

~   μϕ → mϕ

~   μψ → (μϕ + mϕ)/2

~   μϕ → 2μψ → mϕ

When both (inverse) decay and 
scattering are fast, number 
conservation no longer hold, and the 
temperature starts to grow
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Evolution for benchmark model:

nϕ[0]/m3
ϕ = 108,

T[0] = 3/2mϕ,

μϕ[0] = μψ[0] = 0,

y = 10−8

mψ = 0,

Chirality suppressed case, mψ → 0

Neglect Hubble expansion 

ϕψ

ψ

ψ

ψ

ϕc

ϕc ϕc

→ 0 ≠ 0
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Chirality suppressed case, mψ → 0

ϕc

ψ

ψ

~   μψ → mϕ/2
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Chirality suppressed case, mψ → 0

ϕ

ψ

ψ

~   μϕ → 2μψ → mϕ
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Chirality suppressed case, mψ → 0

ϕ ψ

ψϕc

Temperature starts to grow
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Chirality suppressed case, mψ → 0

DM condensate “decays” or 
evaporates due to annihilation
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Chirality suppressed case, mψ → 0

• Boltzmann equation:

Γth ≡
y4 ̂nϕ

32πT2
,

d
dt

(ρth
ϕ + ρψ) = (gϕ+ 7

8 gψ)
π2

30
d
dt

T4 ≈ Γthmϕnth
ϕ ,

• DM condensate evaporates when (gϕ+ 7
8 gψ)

π2

30
T4[tDM] = mϕ ̂nϕ[z = 0]

nth
ϕ ≈

T3

π2

DM lifetime: tDM ∼
1

y4(mϕ ̂nϕ)1/4
, Requiring , 

we obtain the constraint 
tDM ≲ tU = 13.8 Gyr

y ≲ 10−7

t ∼
1

y4mϕ ̂nϕ
T3

DM condensate is stable against evaporation provided coupling is not too large.

(y4mϕ ̂nϕtDM)4/3 ∼ mϕ ̂nϕ
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Evolution for benchmark model:

nϕ[0]/m3
ϕ = 108,

T[0] = 3/2mϕ,

μϕ[0] = μψ[0] = 0,

y = 10−8

mψ = mϕ/50

Chirality unsuppressed case, mψ → 0

Neglect Hubble expansion

ψ

ψ

ϕc

ϕc

≠ 0
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Chirality unsuppressed case, mψ ≠ 0

• As in the previous case, the evolution is first marked by Pauli blocking of condensate 
decay, followed by kinetic equilibration due to decays and inverse decays.

• Eventually, the process  will come into equilibrium, at which point the 
temperature of the dark sector grows,

ϕcϕc ↔ ψ ψ

• Dark matter condensate evaporates when (gϕ+ 7
8 gψ)

π2

30
T4 = mϕnϕ[z = 0]

Γth ≡
y4m2

ψ

πm4
ϕ

mϕ

T
̂nϕ,d

dt
(ρth

ϕ + ρψ) = (gϕ+ 7
8 gψ)

π2

30
d
dt

T4 ≈ Γthmϕ ̂nϕ,

tDM ∼
m4

ϕ

y4m2
ψ(mϕ ̂nϕ)3/4

,

Requiring , 
we obtain the constraint

tDM ≲ tU = 13.8 Gyr

DM lifetime: 

mψ

mϕ
≲ 0.8 ( 10−9

y )
2

( mϕ

10−6 eV )
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Chirality suppressed

• Temperature growth is much slower in the chirality unsuppressed case ( ) 
than in the chirality suppressed case ( ).

T ∼ t1/5

T ∼ t1/3

• This leads to a novel mechanism for slow production of dark radiation in the 
chirality unsuppressed case.

Chirality unsuppressed
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Slow production of dark radiation

• Solve Boltzmann equations for DM condensate and dark radiation 

· ̂nϕ + 3H ̂nϕ ≃ −
y4m2

ψ ̂n2
ϕ

2πm3
ϕT

·ρDS + 4HρDS ≃
y4m2

ψ ̂n2
ϕ

2πm2
ϕT

• Our scenario predicts a sizable 
(  for this benchmark) 
at recombination, while being 
consistent with observed DM 
density today.

ΔNeff ≈ 0.33

• For comparison, we show the 
evolution for a standard decaying 
DM scenario. For a decay width 

, consistent with 
observations, there is negligible 

 at recombination.

Γ = 0.1H0

ΔNeff y = 10−9, mϕ = 10−4 eV, mψ = mϕ/5
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Estimate of dark radiation production

δρDSa4 ∼
y4m2

ψ ̂n2
ϕ

2πm2
ϕTH

a4• Production of dark radiation in a Hubble time:

• During radiation and matter eras, dark 
radiation dominantly produced at late times: ρDS[z] = gDS

π2

30
T4[z] ∼

y4m2
ψ ̂n2

ϕ

2πm2
ϕT[z]H[z]

• The temperature of the dark 
sector during these eras is T[z] ∼ (

y4m2
ψ ̂ρ2

ϕ[z]
m4

ϕH[z] )
1/5

• Requiring  leads to a stronger bound on the coupling:ΔNeff[zrec] ≲ 1

ΔNeff =
8
7 ( 11

4 )
4/3 ρDS

ργ
⟹ T[zrec] ≲ Tγ[zrec] ⟹

y4m2
ψ

m4
ϕ

≲
H[zrec]Tγ[zrec]5

̂ρ2
ϕ[zrec]

y ≲ 10−10 ( mϕ

10−6 eV )
1/2 mϕ

mψ
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Estimate of dark radiation production

• During dark energy era (late times), dark 
radiation production is decreasing, Thus T[z] ∼

1 + z
1 + zDE (

y4m2
ψ ̂ρ2

ϕ[zDE]
m4

ϕH[zDE] )
1/5

• This gives a relation between the dark radiation today and at early times, 

ΔNeff[0]
ΔNeff[zrec]

=
T4[0]

T4[zrec]
= ( H[zrec]

H[zDE]
1 + zDE

1 + zrec )
4/5

∼ 10

• This is much smaller than a standard decaying dark matter scenario. 
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Parametric resonance

Γϕ→ψψ
mϕ

E
≫ σvnϕ ⟹ Q ≡

y2ρϕ

m4
ϕ

≪ 1

• So far we have been implicitly considering the perturbative regime 

• Instead, in the regime , which will typically occur at early times since 
 in the expanding universe, the fermion acquires a large oscillating mass,  

 . It’s typical size is set by the oscillation amplitude, 

Q ≫ 1
Q ∼ a−3

Meff ≃ y ϕ(t)

Meff ∼ y ϕamp ∼ Q1/2mϕ ≫ mϕ

• In this regime the perturbative description using Boltzmann equations is not valid.  
A similar system has been studied in the context of inflationary preheating, where 
the phenomenon of broad parametric resonance is important.  

• Here we will give a qualitative description of the dynamics in this regime, following 
the preheating literature. 
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Parametric resonance

ωk = k2 + y2ϕ2(t)

• Consider the frequency  of the fermion, ωk

| ·ωk | ≲ ω2
k

• When this condition is violated, with large, there is efficient  production. This 
will occur when  is small and for small momentum : 

| ·ϕ | ψ
|ϕ | k

• The particle description is valid when the adiabatic condition holds:

|ϕ | ≲ |ϕ* | ∼ |mϕϕamp/y | , k ≲ y |ϕ* | ∼ ymϕϕamp

• In this broad parametric resonance regime, a Fermi sphere of  with all modes  
 is produced.

ψ
k ≲ kF ∼ k* ∼ y |ϕ* |
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Parametric resonance
• The Fermi momentum is much smaller than the effective  mass:ψ

 kF ∼ (ymϕϕamp)1/2 ∼ Q1/4mϕ ∼ Meff /Q1/4 ≪ Meff

• Thus, the fermions are nonrelativistic while  and the adiabatic condition 
(particle picture) holds.

Q ≪ 1

• During most of the evolution the energy density of the fermions is given by 

 ρψ ∼ M̄effnψ ∼ M̄eff
gψ

2π2
k3

F ∼
gψ

2π2
Q5/4m4

ϕ ∼
gψ

2π2
y2Q1/4ρϕ

• Assuming DM is produced through the misalignment mechanism, one can show that 
over all of the parameter space we obtain  from parametric resonance 
production of fermions.

ρψ ≪ ρϕ

• Since  in the expanding universe, eventually at some late time  becomes 
smaller than unity, at which point our perturbative Botlzmann equation analysis 
above will be valid. 

Q ∼ a−3 Q
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Potential signatures and implications
• Dark radiation

• We predict a novel kind of dark radiation which has self interactions and 
interactions with the DM condensate. 

• This is already constrained by CMB and BAO observations via , and 
can be further probed by future missions, e.g., CMB-S4.

• Such self interacting dark radiation may help to alleviate the Hubble 
tensions (see e.g., Blinov, Marques-Tavares, 2003.08387), however a detailed 
study of the cosmological perturbations is required. 

ΔNeff

• Absence of very dense DM structures

• DM annihilation/evaporation is enhanced in regions with high DM density. 

• At large couplings, our scenario should predict, e.g., cored DM profiles, 
cutoff in (sub-)halo mass functions. 

• Requires more detailed studies (e.g., simulations of structure formation) 
and can potentially be probed with future observatories (e.g. Vera Rubin). 
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Summary
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DM stabilized by neutrinos

• A natural candidate for the fermions in our scenario are the SM neutrinos

−ℒ ⊃
1
2

yij ϕ νi νj + h . c .

• Here  are mass eigenstates, and we will mostly have in mind the 
normal hierarchy.  We will also typically assume there is no special structure 
in the coupling matrix .

i, j = 1,2,3

yij ∼ y

• We will assume the mass hierarchy  Then the  is 

stabilized due to the Pauli blocking of its decays to .

mν1
< mϕ/2, mϕ ≪ mν2,3

. ϕc
ν1

• There are several differences in this scenario, mainly due to the presence of 
the cosmic neutrino background (C B). In particular,ν

• Additional C B interactions with  can inhibit neutrino free streaming near 
recombination. This is not an issue if the couplings are small enough.

ν ϕ

• There can be important modifications to the C B at late times, which may 
enhance the prospects for its detection. 

ν
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• Let us first consider weak couplings, . Then the heavy neutrino 
decays happen at temperatures , i.e., the decays happen out of 
equilibrium.  We have the following processes:

y ≲ 10−14

Tν ≲ 0.05 eV

• Assuming these cascade decays occur at the same rate, the the comoving 
number density of light neutrinos increases 

• The C B detection in a tritium capture experiment such as PTOLEMY can be 
enhanced.  The detection rates depend on the PMNS elements,

. The enhancement factor is 

ν

| (UPMNS)ei |
2 = {0.7,0.3,0.02}

C B component from primordial s (weak coupling)ν ν
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• Next, consider moderate couplings, .  Then the heavy 
neutrino decays happen thermally at higher temperatures, and neutrinos and 
thermal s reach equilibrium. The comoving entropy stored in the neutrino-  
system is conserved, leading to the relation 

10−14 ≲ y ≲ 10−9

ϕ ϕ

C B component from primordial s (moderate coupling)ν ν

• The final  number density is thus increased by a factor ν1

• The C B detection is enhanced by the factor ν

• This may be challenging to detect given the PTOLEMY energy resolution ~ 
0.01 - 0.1 eV.
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• Besides the components from heavier neutrino decays, there is the neutrino 
Fermi sea component produced from the Pauli-blocked DM decays.   

C B component from DM decayν

• The  number density of this component is ν1

• This dominates over the other components when . The C B 
detection rate is enhanced by a factor of 

mϕ ≫ TSM
ν [0] ν

• This component is particularly interesting as it provides a direct signature of 
the stabilization mechanism. 

nν1
∼

1
6π2

E3
F ∼

1
6π2 ( mϕ

2 )
3



Outlook

• DM stability may provide an important clue to its basic nature and point the 
way towards its observational signatures. 

• We have explored the hypothesis that DM stability is a consequence of the 
Pauli exclusion principle.

• Sizable interactions can populate an interacting dark radiation component, which 
can be probed through precision cosmology.
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• For the minimal model of a scalar and a BSM fermion, the decay  is Pauli  
blocked provided the DM is lighter than about 10 meV.

ϕ → ψ ψ

• There is wide scope for further investigations: precision cosmology, C B 
detection, model building, … 

ν

• If the DM decays to neutrinos, the cosmic neutrino background today can be 
modified, and its detection prospects could be enhanced. 


