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From Jesse Thaler — PHENO 24

“...but what is the machine actually learning?”

My evolving perspective:

The desire for human interpretability often arises when
we imperfectly specify the task we want to accomplish

A more actionable definition of interpretability:
identifying low-rank structures in high-dimensional datasets

Jesse Thaler (MIT, IAIFl) — Interpretable Machine Learning for Particle Physics 6



From Jesse Thaler — PHENO 24

Three Lessons since Pheno 2019 -t
Highlighting the power of active interpretability

If you have a catalog of trusted observables, you can
translate a black-box algorithm on low-level inputs
into a simple classifier on high-level features

If there are simple operations like multiplication and
(P P2 >73 sums that don’t really require “interpretation”, you can
bake those into your machine learning architecture

18(51) — (5| If there is a property you want your network to have,
1) — 2 . . . . .
make sure to impose algorithmic guardrails, otherwise

< L|p1 — po|l . . . e
the machine might pursue undesirable optimization

Jesse Thaler (MIT, IAIFI) — Interpretable Machine Learning for Particle Physics 20



My Experience

» Neural Networks set the performance limit for S/B discrimination, etc.

» They can model any non-linear functional transformation with enough
depth and the correct training objectives.

= This is time intensive, and the “black box” problem is real.

» My preferred use case is to build the domain knowledge (physics) into a
curated set of applicable observables explicitly at the front end.

» Then, simpler machine learning (a Boosted Decision Tree) can tell you
which observables are most relevant and perform an optimal separation.

» We have found that performing cuts by hand is biased & fine tuned
(essential sensitivity adjustments in the tails may not appear until you
have already cut very hard and are very easy to overshoot).

(Dutta, Fantahun, Fernando, Ghosh, Horne, Kumar, Palmer, Sandick, Stengel, Snedeker, JWW)



Whatisa BDT?

Boosted Decision Trees are a type of Supervised Machine Learning

“Hypothesis Boosting” is a technique for combining a number of “weak
learners” (here shallow Decision Trees) into a “strong learner”

Each tree separates signal (class 1)
from background (class 0 ) via
successive forks at selected split
points on one data feature at a time
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Each terminal leaf carries a score,
totaled over trees for a result on (0,1)

Later trees focus on misclassifications
from earlier trees (boosting!)




Why BDTs for Physics?

» Binary classification problems (Signal vs. Bg) are common
+» We want to maximize discrimination power

» We want to eliminate bias and work efficiently

+» We want to incorporate domain knowledge & expertise

» We want to understand what the machine learning learned

BDTs balance POWER with TRANSPARENCY



What is XGBoost?

« XGBoost (Extreme Gradient Boosting) by Tiangi Chen is a popular,
innovative, widely available, and very fast BDT implementation

= Trees are built “greedily” (no backtracking), with the splitting feature,
splitting value, and leaf score selected to optimize an objective £

» This is guided by first (gradient) and second (Hessian) derivatives of the
loss-function with respect to the class estimator of the nth object
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XGBoost Logic

» Events with common features flow similarly through the decision tree,
and “vote” for the score carried by their destination node.

= Events that are currently missorted (large slopes) get bigger votes.

= These factors are also scalable by per-event physics weights.
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XGBoost Details

» The algorithm “works backwards”. If leaf assignments were KNOWN,
then one could calculate the leaf score s, that optimizes the gain.

» The max —(6pL) split is selected (features AND value are SCANNED)

+ “Regulators” limit overtraining
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Binary Logistic Regression

= The binary logistic objective

o,

yields continuous
classification scores on 0 to 1

[t is an explicit function with
explicit derivatives, so the
gradient and Hessian are
calculated & known.

A key idea is to map between

an infinite space where scores

are summed and a finite space
where they are reported.
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Note on Tuning / Weights

» A number of hyper-parameters, including the objective-level regulators
v, @, and A are available to confront “Bias-Variance” issues

« In short, one must not add complexity without benefit (like y*/DOF)

« XGBoost also allows specification of maximal tree depth and count, with
handles for “early stopping” or “pruning” when learning slows

= We balances data sets sent for training by separately normalizing the
signal and background cross section to unity

« This stabilizes optimal numerical values of various hyper parameters,
eliminates tension between intensive / extensive scaling, and induces a
natural O (1) scale for the gradient, Hessian, and regulators



MInOS Output
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MInOS Output

Signal vs. Background Significance £ — 300 fb! for Validation Fold 1
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+ Survival fraction of S, B as a function of the classification threshold
are used to show achievable significance (at specified luminosity)



MInOS Output

Receiver Operating Characteristic ttjj Background in Training Fold 1
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= The ROC curve is a standard metric of S/B separability

» A feature importance chart clarifies what is going on inside the BDT



SMG Takeaway Messages

= We considered a small-mass-gap scenario that is challenging at the LHC.
= We were able to improve on a prior study with manual event selections.
« The older study was very sensitive to the sequence of applied cuts.

= The older study did not separate training from validation (bias).

= We doubled significance and increased the S/B by 50%.

» We found good stability across different train/test folds.

= We learned that it is beneficial to help the ML by making ”obvious” cuts
by hand so that its attention can be focused on the surviving tails.

(Dutta, Fantahun, Fernando, Ghosh, Horne, Kumar, Palmer, Sandick, Stengel, Snedeker, JWW)



Data Smoothing

« The statistical population of events grows sparse with harder cuts
» Smoothing may better approximate the reality of continuum data
» Naive interpolation (e.g. cubic spline) can induce unphysical artifacts

» We want to retain sharpness where clustering is real while washing out
jitter where statistical event densities are low

» A proprietary multi-step solution is adopted to meet these goals



Data Smoothing

First, we do variable-width binning with equal areas (cross sections)
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~ Data Smoothing

» Then, we populate narrow fixed bins via Gaussians « prior widths
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Data Smoothing

- Finally, we sum and scale to generate a smooth density of area one

‘ 40
35 1
301
251

20 A

0.00 0.05 0.10 0.15 0.20 0.25




Software Advertisement

PROCEEDINGS

OF SCIENCE

Automated collider event selection, plotting, & machine
learning with AEACuS, RHADAManTHUS, & MInOS
A unified pipeline for computing observables,

plotting distributions, and applying BDT ML

Joel W. Walker®*

Pe r-eve nt we | g ht S fo r | N d e pe n d e nt an d “Department of Ph?lsic.r and Astronomy, Sam Houston State University,
Box 2267, Huntsville, TX 77341, USA
oversampled sim is handled automatically E-mail; jwalkerdshsu. edu
CO d e iS fU I Iy d e CO U p | e d frO m | n St r U Ct i O n S V i a A trio of automated collider event analysis tools are described and demonstrated, in the form of

a quick-start tutorial. AEACuS interfaces with the standard MadGraph/MadEvent, Pythia, and
Delphes simulation chain, via the Root file output. An extensive algorithm library facilitates the

a unified analysis description meta-language

computation of standard collider event variables and the transformation of object groups (including

Th e p a C ka ge |S ava [ | a b | e fo r d OW n | O a d & jet clustering and substructure analysis). Arbitrary user-defined variables and external function
. B calls are also supported. An efficient mechanism is provided for sorting events into channels with

p u b I IC use fro m G It H u b . distinct features. RHADAManTHUS generates publication-quality one- and two-dimensional
histograms from event statistics computed by AEACuS, calling MatPlotLib on the back end. Large

htt p S: / / git h u b .com / J oe |WW a | ke r / A E AC u S batches of simulation (representing either distinct final states and/or oversampling of a common

phase space) are merged internally, and per-event weights are handled consistently throughout.
Arbitrary bin-wise functional transformations are readily specified, e.g. for visualizing signal-
to-background significance as a function of cut threshold. MInOS implements machine learning
on computed event statistics with XGBoost. Ensemble training against distinct background
components may be combined to generate composite classifications with enhanced discrimination.
ROC curves, as well as score distribution, feature importance, and significance plots are generated
on the fly. Each of these tools is controlled via instructions supplied in a reusable cardfile,
employing a simple, compact, and powerful meta-language syntax.

Walker - Sam Houston State



Application: Dark Sector Mass
Reconstruction (Hidden Valley)

The Hidden Valley Scenarios were described by Strassler and Zurek leading up to
the start of collisions at the LHC (hep-ph/0604261)

“ A unexpected place ...
... of beauty and abundance ...
... discovered only after a long climb ... ”

Characterized by new light physics that is
weakly coupled to the SM

A heavy intermediary presents a high
energy barrier to access the new sector
Strong dynamics & confinement are typical
A mass gap allows decays back to the SM

Strassler



Hidden Valley Strong Dynamics

Classic signatures include a heavy dilepton resonance and/or displaced vertices

We are interested here in a more challenging scenario (0806.2835 Strassler)

The mediator is a few-TeV Z’

coupled to the SM by kinetic mixing

Heavy v-Quarks are pair produced v'plons ,’%
and they shower / hadronized /

Flavor-diagonal pions (10’s to 100’s
of GeV) can decay back to the SM 4
3 Strassler

and shower / hadronize AGAIN ...
helicity-suppression favors b’s, taus

Off-diagonal pions (SM NEUTRAL!!)
are stable (DM candidates) ... the
result is semi-visible jets



Hidden Valley Signatures
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Hidden Valley Signatures
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Hidden Valley Signatures
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Hidden Valley Signatures
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Hidden Valley Signatures
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What we want to focus on

U Resembles QCD -
= This explains difficulty of searches in this area.

= Qurgoalistodiscernjust how closely it
resembles QCD and distinguish it

U Combinatoric background -
= Due to the large number of possible

pairings, reconstructing the physical dark pion
mass is very challenging




ATLAS Search for Dark Jets

[ ' i Xiv:2311.03944
 Search for Z-prime production with arAlv

decays into 'dark quarks' at ATLAS
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O Selects signal events by
anomalously large number of tracks

in jets at a given Py

Fraction of Jets
o

1 Aims to reconstruct Z' mass, but not
to see the dark pions directly

O A limit was set on the production
cross-section times BR as a function

of the Z’ mass
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DiJet Resonance Techniques
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JAssumed that dark pions decay into bottom quarks
JReconstructed resonances in dijet masses or monojet masses

dThis reconstruction works much better for higher masses



The Combinatoric Problem

 Mass is accessible if v-Pions are isolated and decay to 1 thick or 2 thin jets
 However, jet definitions & analysis have to be tuned to cross regimes

e Asthe count of proximal Pions increases, a severe combinatoric BG emerges

To identify this signal, it seems likely that tagging of : : o . . .
individual jets is not enough. By definition, the num- Slmply plOttlng dl']et Invariant masses, where the Jets

ber of heavy-flavor-tagged jets cannot be larger than the are selected at random, cannot reveal the v-pion reso-

number of jets. But the number of B mesons can greatly  pance. The huge combinatoric background, the fact that
exceed the number of tagged jets, as suggested in Figs. 16

and 17, In other words, although these events do not ALy jets contain multiple b-quarks, and relatively poor
have an exceptional number of taggable jets, often four resolution for jet momentum and energy would eliminate
or less in the A cases, they do have an unusual number ;

any signal.
of B mesons. Thus to distinguish the signal from back- y 818
ground, it is essential to detect as many vertices from the
B mesons as possible.

Walker - Sam Houston State 30



SIFT: Scale-Invariant Filtered Tree

Low top pt High top PT

boost

(Gregor Kasieczka) N

Candidate pairs are merged, dropped, or isolated,
according to criteria integrated into the SI measure
SIFT unifies: a) large-radius jet finding, b) filtering of
soft wide radiation, and c) substructure axis finding
into a single-pass prescription for low/high boosts

Vs =13 TeV, Pr=1600 GeV +10% Vs =13 TeV, Pr= 3200 GeV +10% °

(=}

Receiver Operating Characteristic .
\ B Wi 0.020
— ¢ jjj

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 ’ 0 50 100 150 200 250 300 350
SIFT @ N =1, Leading SIFT Jet, 0.01 Pre-Clustering, SIFT-ed Reconstructed Mass, Leading SIFT Jet, 0.01 Pre-Clustering, SIFT-ed

* Massive resonances decay into hard prongs

e Jet definitions with fixed cones impose a scale

* Boosted objects collimate and structure is lost

e Substructure recovery techniques are complex

e Can we avoid losing resolution in the first place?

* Select proximal objects w/ scale-invariant measure

B3, + Eig

5AB =

N-subjet Tree holds superposition
of projections onto N=1,2,3 prongs
Hard prongs are preserved to end
The measure history discriminates
N=1,2,3 typically above 90% AUC
Faithful kinematic reconstruction



SIFT-ing for Dark Matter

SIFT, with filtering but without dropping, may be ideal here

It considers the event as a whole (no cones) with multi-scale sensitivity

It creates a well-defined sequential SLICE through the combinatorics

Since hard prongs are merged last, It is conceivable that
the final m ergers are expecte d to the v-pion resonance can be better identified with a more

sophisticated variable than single jet mass, looking more

hold relevant physical masses carefully at the substructure of the jets. (It is even pos-

sible that, with so many v-pions per event, and with a
bit more statistics than available here, the v-pion can be

We can look for resonances in the discovered through its rare tree-level decay to muon pairs
distribution of the mass for the Nth or its loop-induced decay to photon pairs.) More gener-

pair of merged objects ...

ally, it is important to study further how best to look for
resonances in very-high-multiplicity signals, such as case
B1.

Walker - Sam Houston State 32



Plateau Investigation of New Scalse (PIONS)

U Cartoon of a log plot of jet algorithm merger
masses, sorted by mass

Q line shows a typical QCD showering
O Green shows a Hidden Valley plus QCD
showering
O Red upright lines are separated by the
hypothetical plateau length N
= This length is a parameter defining the | --------
variable
O Slope of the Blue line is the variable we want
to searchin
= We calculate the rms of discretized
derivatives between mergers to yield the
variable IIy

Merger mass

Sorted merger number
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Exploring Merger Masses in Simulation

Vs =14 TeV

© Bright QCD

O M, =10 GeV
1084 | @ M, =50 Gev
O M, =200 GeV

102 4

10 4

Sorted SIFT Mass N

U This is the sorted merger mass plot
averaged over a large number of
events.

U Note flattening in blue curve relative
to red




SIFT does a good job of highlighting Masses

Vs =14 TeV, My = 32 TeV
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BDT Results, M, =

10 GeV - All Variables

O A kitchen-sink analysis utilizes dijet masses,
monojet masses, particle counts, and SIFTy
variables

U Uses information very similar to ATLAS
analysis, improved by addition of the two
other approaches

L AUROC score of 89%

Receiver Operating Characteristic for Validation Fold 1
Background vs. Signal
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Classification Scores

M, SIFT Classic Kitchen
All QCD Sink
10 79 83 77

89
25 89 94 87 96
50 95 98 91 99
120 98 99 93 100
200 99 99 92 100
500 96 99 73 99

QO SIFTy technigue alone is outcompeting dijet resonance techniques of
Strassler and broadly-classified QCD variables alone

U Putting it all together, we have strong classification power throughout

the explored parameter space
= Makes explicit the complementarity of these approaches



Conclusions for Dark Sector Study

[ We can achieve this level of discrimination between QCD
showers and new dark QCD showers with prompt decays

0 We can do that in this regime, where it seems other
techniques do not work as well
= |nformation from these techniques is complimentary

U This is a valuable expansion of the reach of the LHC into the
hidden valley parameter space




SIFT: A Scale-Invariant Distance Measure

* |tis worth asking whether alternative techniques could provide intrinsic
resiliency to boosted event structure; this requires dropping the input scale Ry

* |t would be good to “asymptotically” recover key behaviors of Anti-kT

* Numerator should favor angular collimation; we propose AM?Z, similar to JADE

« Denominator should suppress soft pairings; we propose XE%, similar to Geneva

 Result is dimensionless, Lorentz invariant (longitudinally in the denominator),
and free from references to external / arbitrary scales

Amip = (P +p)> —m4y —mp = 2phpf

~ 2FEAEB % (1 —cos Afap) ~ EAEBA 9,243
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Image: CMS



Geometrizing the SIFT Measure

dap = P x AéiB
cosh Ayap — E4EB cos Adap
cosh Auap

The measure is a simple product of energy and angular-type factors
Clustering preferences pairs that are (relatively) soft and/or collinear

Since mutually hard (relative to other available radiation) members will defer
clustering, prongy structure is preserved to the end and easily accessed

Several problems remain beyond the measure (read on for the solutions ...)
Extraneous wide and soft radiation is assimilated very early

This distorts the kinematic reconstruction (mass especially)
Moreover, there is no sense of when to *stop™* clustering



FILTERING Stray Radiation

* We know, at least, how to deal with soft, wide-angle radiation

* Take a cue from “Soft Drop” (2014 Larkoski, Marzani, Soyez, Thaler)

* This “Grooming” removes contaminants like ISR, UE, and pileup

» SD iteratively DECLUSTERS C/A, dropping softer object unless & until:

min(Pr,, Prg) (ARAB>B
cut

Prap + Prp Ry

e Typically, z.yt is O(0.1), and § > 0 for grooming
 We propose an analog to be applied within the original clustering
itself, expressible in the scale invariant language

D2
Cluster: % < { (2 eAB) < 1}

* With factors of 2 in their “natural” places the maximal effective cone size is V2
* This is a DYNAMIC boundary, and the angular size reduces for imbalanced scales



Dropping vs. Isolating

This leaves the question of what to do when clustering FAILS ...
There are two distinct ways to fail the filtering criterion, to be handled differently
The scale disparity can be too extreme (soft radiation) at O(1) angular separation

(e < 1) and (AR%p ~ 1)

In this case the metric product is small ... DROP the softer member
Or, the angular separation can be too large (wide angle) with comparable scales

(Af{iB > 1) and (e45 ~ 1)

In this case the metric product is large ... ISOLATE both objects

Isolate: {1} <éus
Drop: {(26A3)2 < 1} < dap < {1}



Clustering Phase Diagram

2 x 4B

< SOFT

0
0 < COLLINEAR L 2 AR =2 s

* The unification of clustering, filtering, and isolation also provides natural halting
e Grey contours “y = §/x” mark constant values of the measure

* Isolation occurs above 6 = 1; this amounts finding of variable large-radius jets

* The same factors separate clustering from dropping at “y = x”
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Evolution of the Measure

The measure “jumps” when it crosses the natural joint count
The transition to isolation for § > 1 is supported by simulation

Zero-ISR Generator-Level QCD Multi-j Zero-ISR Generator-Level QCD Multi-j
V5 =14 TeV, V5 =400 GeV £20%, AR > 2.0, pr > 25 GeV V5 =14 TeV, V5 =800 GeV £20%, AR > 2.0, pr > 50 GeV

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

Number of Unmerged Objects N Number of Unmerged Objects N
Zero-ISR Generator-Level QCD Multi-j Zero-ISR Generator-Level QCD Multi-j
V5 =14 TeV, V35 = 1600 GeV £20%, AR > 2.0, pr > 100 GeV Vs =14 TeV, V5 = 3200 GeV £20%, AR > 2.0, pr > 200 GeV

1 3 2 1

7 6 5 1 3 2 1 8 7 6 5
Number of Unmerged Objects N Number of Unmerged Objects N
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The N-Subjet TREE

We observe that:
o hard structures are preserved
o wide concentrations of hard objects are isolated
o soft wide radiation is dropped

However, hard prongs within a variable radius jet do still cluster

How do we fix the interior halting criterion to avoid losing structure?

The most interesting alternative is to not halt at all ...

We learn more about whether the prongs “want” to merge by merging!

Hard prongs are the final objects to be merged, and we retain a superposition of
projections onto all numbers N of prongs — suitable for computing N-subjettiness
The record of structure is also directly imprinted on the measure history



SIFT Measure at Final Mergers

We are also interested in whether the SIFT measure tracks jettiness DIRECTLY

It seems not only to do so, but to excel specifically at large boost
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Binned Event Fraction

Binned Event Fraction
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W & top Mass Reconstruction

The included filtering also gives sharp accurate mass reconstruction at large boost

V5 =14 TeV, pr = 200 GeV +£5%
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1/2 and 3/2 Discrimination with BDT

Signal and Background Score Distribution

= oo pEVE | AN | N | | gy
100 0.62 0.68 0.69 0.70
200 0.91 0.86 0.88 0.89
400 0.89 0.85 0.91 0.92
800 0.82 0.79 0.92 0.93
1600 0.77 0.74 0.91 0.92
3200 0.78 0.76 0.88 0.90
TABLE III. Area under curve ROC scores for discrimination of
—— —— resonances with hard 1- and 2-prong substructure using a BDT
0.0 0.2 0.4 0.6 0.8 10 trained on various sets of event observables.
Signal Classification Score
GeV+5% N+1/N N+1/N
y Receiver ()peIdtLgC_hdId(,tellbtlL , P V5 7.]:)ELPH/E ) TSIFT/ 5XB S+ 7
/ g 100 0.61 0.61 0.63 0.65
0.8 | 200 0.63 0.60 0.71 0.72
P / & 400 0.82 0.74 0.90 0.90
‘3;0-6 y - 800 0.85 0.80 0.94 0.95
% / 1600 0.77 0.77 0.97 0.97
[aW} L
;5 04 3200 0.77 0.79 0.98 0.99
0.2 — < TABLE IV. Area under curve ROC scores for discrimination of
e resonances with hard 2- and 3-prong substructure using a BDT
4 Area Under Curve: 0.91 . .
0.0 ¥ Ll—v—J trained on various sets of event observables.

1
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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Other Applications: Q/G discrimination

* An image-based approach to discriminating quark- and gluon- initiated jets

* Plots are an ENSEMBLE after normalization and rotation, etc.
(Dutta, Kamon, Kim, P.R. Kumar, B. Lei, B. Mallick, S. Sinha, JWW)
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Other Applications: Q/G discrimination

* Neural networks can hit ~ 80% discrimination by AUC

Table 2: AUC values% in each energy level.

. iBnergy | o 50 100 250 500 750 1000 1250 1500 2000
Particle
ResNet 77.77  76.05 79.32 80.43 80.94 81.42 81.88 81.67 81.75 82.09
ResNet + side 80.42 76.64 79.71 80.46 79.34 80.96 80.41 78.34 78.28 78.49
XGBoost (side only) 75.15 70.69 74.39 7532 7522 7556 7588 7551 75.67 76.04
BART (side only) 7826 7421 7743 78 77.85 78.08 78.28 7824 78.18 78.49
Autoencoder + BART 80.44 76.39 80.05 80.74 81.45 81.75 82.38 81.9 81.93 82.58
Autoencoder + XGBoost | 77.96 73.29 77.51 78.3 79.1 79.15 80.03 79.7 79.49  80.35
PCA + BART 7751 67.21 70.68 71.53 T71.9 72.05 7255 72.68 73.29 74.07
PCA + XGBoost 75.36 64.94 68.34 69.18 70.13 70.5 7142 7194 7153 72.34
Autoencoder 80.34 76.29 79.69 80.93 81.30 81.64 81.72 81.81 R81.76 82.54
Variational Autoencoder | 80.65 76.36 79.81 80.83 81.23 81.56 81.63 81.76 81.95 82.49
Autoencoder + side 80.38 76.52 79.87 80.89 80.81 81.3 81.56 81.13 81.56 82.03
e SIFT + BDT hits 80-83% at the 50 GeV benchmark
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Summary and Conclusions

SIFT is a SCALE INVARIANT clustering algorithm designed to avoid losing substructure
FILTERING of soft-wide radiation and variable-radius isolation is fully integrated

The measure history & TREE of N-subjet axis candidates encode structure on the fly

There are a great variety of potential applications, including SIFT-ing the Dark Sector
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