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6Jesse Thaler (MIT, IAIFI) — Interpretable Machine Learning for Particle Physics

“…but what is the machine actually learning?”

My evolving perspective:

The desire for human interpretability often arises when 
we imperfectly specify the task we want to accomplish

A more actionable definition of interpretability: 
identifying low-rank structures in high-dimensional datasets
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20Jesse Thaler (MIT, IAIFI) — Interpretable Machine Learning for Particle Physics

Three Lessons since Pheno 2019
Highlighting the power of active interpretability

If you have a catalog of trusted observables, you can 
translate a black-box algorithm on low-level inputs 
into a simple classifier on high-level features

If there are simple operations like multiplication and 
sums that don’t really require “interpretation”, you can 
bake those into your machine learning architecture

Apologies that examples 
are all from my own work

If there is a property you want your network to have, 
make sure to impose algorithmic guardrails, otherwise 
the machine might pursue undesirable optimization
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Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

where 1 corresponds to f correctly ordering the points
and 0 corresponds to inverted ordering. Starting again
from the jet pT and Mjet information, we identify the
subset of event pairs that are incorrectly ordered:

Y0 =
n
(x, x0)

���TO
⇥
HLN0

⇤
(x, x0) = 0

o
. (36)

In each iteration, we find the EFP that has the highest
AUC in the incorrectly-ordered subspace,

EFPn = argmax
EFP2S

AUC[EFP]Yn�1 , (37)

construct a new joint classifier HLNn ⌘ HLN0 + nEFP,
and identify the next incorrectly-ordered subset of events:

Yn =
n
(x, x0)

���TO[HLNn](x, x
0) = 0

o
. (38)

Note that this procedure is completely independent of
the CNN.

The results from this truth-label guided procedure are
shown in in Fig. 5 in terms of the AUC and ADO. In
the first iteration, the classification performance is bet-
ter than in the black-box guided search, which makes
sense since the label guided method is trying to optimize
AUC directly. After 7 iterations, though, the classifica-
tion performance never rises above AUC = 0.951. As
mentioned in Sec. II B, isolating the incorrectly-ordered
pairs turns out to be counter productive, since some of
these pairs could never be ordered correctly even by the
optimal classifier. This emphasizes the value of using
the ADO relative to an already-trained network, to make
sure attention is focused on event pairs that have a chance
to be correctly ordered.

D. Physics Interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision. In
particular, the first few observables in Table III give us
a glimpse at a possible alternative history for the field
of jet substructure, if combinations like C2 and D2 had
not been previously identified. Distributions of the EFPs
found in the first four iterations are shown in Fig. 7.

After pT and Mjet, the first EFP selected by the black-
box guided strategy is:

⇣
=2,�=

1

2

⌘

. (39)

The fact that a  = 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c = 2
graph, so just like jet mass, it probes deviations from 1-
prong substructure. However, it uses a 5-point correlator
(unlike mass which is a 2-point correlator) and it uses the
� = 1

2
angular exponent (unlike mass which uses � = 2).

Putting these together, Eq. (39) is an IRC-unsafe probe
of hard, small-angle radiation.

The second EFP is also IRC unsafe and also corre-
sponds to a c = 2 graph:

(=0,�=2). (40)

Here, though, we have  = 0 and � = 2, which is a probe
of soft, wide-angle radiation. It is interesting that the
black-box guided strategy selects these two complemen-
tary c = 2 observables in the first two iterations, indicat-
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representation, which converts the latent representation
into the observable O. The Deep Sets theorem, as dis-
cussed in Refs. [34, 37], guarantees that any (infrared and
collinear (IRC)-safe) observable can be approximated ar-
bitrarily well for a su�ciently expressive F and �, and
large enough L. However, the theorem makes no guar-
antees on the complexity of � or F , and may require a
very large L.

In this paper, we introduce Moment Pooling, a natu-
ral extension of Deep Sets architectures that significantly
reduces the number of latent dimensions L needed while
maintaining or improving its performance. The Moment
Pooling operation generalizes the expectation value of �
in Eq. (1) to higher order multivariate moments:

Ok(P) ⌘ F
�
h�a

iP , h�a1�a2iP , ... h�a1 ...�akiP
�
, (2)

where k is the highest order moment considered. This
procedure is inspired by histogram pooling [38], in which
the � are histograms binned in x. We focus primarily on
applying Moment Pooling to EFNs in the collider physics
context, where Eq. (2) defines an order k Moment EFN,
which reduces to the ordinary EFN when k = 1. Alterna-
tive modifications of EFNs are discussed in Refs. [39, 40].

We show that for k > 1, a Moment EFN enables the
same or better performance on quark/gluon jet classifica-
tion as an EFN, but with a much smaller latent dimen-
sion L, allowing the same machine-learned observables
to be constructed using fewer base functions. With fewer
latent dimensions, it is much easier to directly visualize
the model’s internal representations and therefore eas-
ier to directly interpret and find closed-form expressions
for the learned observable. As a concrete example, an
order k = 4 Moment EFN with a single latent dimen-
sion achieves comparable performance on quark/gluon
jet classification to an ordinary EFN with 4 latent di-
mensions. We are able to directly plot this latent dimen-
sion and find that it takes a remarkably simple closed
form, the “log angularity” observable, which bears many
similarities to jet angularities [41, 42].

The rest of the paper is organized as follows: In Sec. II,
we give an overview of moment pooling and the Moment
EFN architecture, show how it naturally arises as a gener-
alization of Deep Sets, and introduce the idea of e↵ective
latent dimensions. In Sec. III, we demonstrate how the
Moment EFN may be used for quark/gluon discrimina-
tion, and how Moment EFNs outperform ordinary EFNs
as L and k are varied. In Sec. IV, we analyze the la-
tent spaces of small-L Moment EFNs and attempt to
understand them in terms of simple closed-form fits, al-
lowing for analytic observables to be extracted from the
model. Finally, in Sec. V, we present our conclusions
and outlook. Implementation details of the architecture
may be found in App. A. An additional study involving
regression on jet angularities, rather than classification,
using Moment EFNs may be found in App. B. Additional
studies complementing Sec. III, involving top/QCD dis-
crimination and Moment Particle Flow Networks (PFNs)
rather than EFNs, may be found in App. C.

II. MOMENT POOLING

We begin with the construction of the Moment Pool-
ing operation. We first define Moment Pooling as an
extension of Deep Sets and apply it to EFNs, a form
of weighted Deep Sets, to produce Moment EFNs in
Sec. IIA. Then, in Sec. II B, we discuss how Moment
Pooling is capable of reducing the latent dimension of
EFNs through the concept of e↵ective latent dimensions.

A. The Moment Energy Flow Network

The Moment Pooling operation, as given by Eq. (2),
is a generalization of Deep Sets-style architectures. The
form of Eq. (2) is motivated by the observation that the
summation step over the latent representation �a in Deep
Sets architectures, generalized to weighted sums in EFNs,
can be regarded as taking an expectation value of the L-
dimensional random variable �a(x) defined over a base
space Rd, taken over P:

h�a
iP ⌘

X

i2P
zi�

a(xi), (3)

where zi are weights and xi 2 Rd. In the collider
physics context, zi are (normalized) particle energies and
xi = (yi, �i) are particle positions, and P is a probabil-
ity distribution of energy on detector space, or an energy
flow [43–47], over which we can take expectation values.2

Applying Eq. (3) to Eq. (1), we find:

O(P) = F

 
X

i2P
zi�

a(xi)

!
, (4)

which is how an EFN is typically written [34]. Note that
an ordinary Deep Sets network, as presented in Ref. [37],
is simply a special case of the EFN where zi = 1 for all
i.

Given that EFNs are functions F of the expectation
value of �a, it is natural to extend them to also include
higher-order moments of �a, arriving at the Moment En-
ergy Flow Network. More precisely, the Moment EFN
of Eq. (2) simply extends F from being a function of
only the expectation value of �a to a function of up to k
moments of �a, which reduces to the ordinary EFN for
k = 1. As an explicit example, the k = 2 Moment EFN
takes the form:

O2(P) = F (h�a
iP , h�a1�a2iP), (5)

where h�a1�a2i is the second moment of �, which is:

h�a1�a2iP =
X

i2P
zi�

a1(xi)�
a2(xi). (6)

2
To align with the notation of Ref. [47], we have h�aiP = hP, �ai.
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will be small. Using EFNs as a representative example,
we show how to train an IRC-safe neural network to be
maximally sensitive to non-perturbative hadronization,
thereby constructing an observable that is “safe but in-
calculable”.3 As a step towards restoring calculablity,
we introduce Lipschitz Energy Flow Networks (L-EFNs),
whose bounded gradients ensure bounded sensitivity to
non-perturbative corrections.

The fact that IRC-safe observables can have cross sec-
tions with large non-perturbative corrections is not new,
even if it may not be widely appreciated. The stan-
dard (but misleading) lore is that IRC-safe observables
should have non-perturbative corrections that are power-
suppressed as (⇤QCD/E)n, where ⇤QCD is the QCD con-
finement scale, E is the energy scale of the process in
consideration, and n is some integer power (typically 1 or
2). Already, though, it is known that jet angularities [34–
37] with angular exponent � . 1 have non-perturbative
corrections with n = � scaling [8, 19, 38], which turns
into O(1) e↵ects as � ! 0. Because there is no general
first-principles understanding of non-perturbative QCD
e↵ects, then the cross section is essentially incalculable
(or at least untrustable) if these corrections grow large.

In the context of IRC-safe ML models, we are not
aware of any previous studies of the general impact
of non-perturbative e↵ects. Here, to identify ML ob-
servables with maximal non-perturbative sensitivity, we
train an IRC-safe classifier to distinguish parton-level
from hadron-level events. Classifiers whose cross sec-
tions have controlled non-perturbative corrections should
be unable to distinguish between these samples. In-
stead, we find that EFNs are highly e↵ective at parton-
level versus hadron-level classification, implying large
non-perturbative sensitivity. Our new L-EFN architec-
ture reduces this sensitivity by imposing spectral nor-
malization [39, 40], which is equivalent to bounding
the Lipschitz norm of the network (see related work
in Refs. [41, 42]). This approach is motivated by the
Kantorovich-Rubinstein duality theorem [43] and the En-
ergy Mover’s Distance (EMD) [44], which provides a ro-
bust way to estimate the size of non-perturbative e↵ects.

The remainder of this paper is organized as follows.
In Sec. II, we introduce L-EFNs and explain how the
Lipschitz constraint enforces an EMD bound on non-
perturbative corrections. We then perform a case study
in Sec. III to compare the hadronization sensitivity of
EFNs and L-EFNs. We investigate the learned latent
representations of (L-)EFNs in Sec. IV and conclude in
Sec. V. For completeness, we perform a quark/gluon dis-
crimination study in App. A.

3
The opposite case of “unsafe but calculable” observables can arise

in resummed perturbation theory, where there is no order-by-

order ↵s expansion but nevertheless non-perturbative corrections

are suppressed [19, 20].

II. METHODOLOGIES

A. Lipschitz Energy Flow Networks

The L-EFN architecture we propose in this work is
built on top of a standard EFN, which provides a generic
framework for learning IRC-safe observables. Given a jet
with constituent momenta p1, p2, . . . , pM , an EFN com-
putes a function of the form:

EFN({p1, . . . , pM}) = F

 
MX

i=1

zi�(p̂i)

!
, (1)

where zi = pT,i/pT,jet is the constituent momentum or
energy fraction and p̂i is the particle’s angular position
relative to the jet axis. The function � : R2

! R` maps
individual particles to a latent space of dimension `. The
function F : R`

! Rdout maps the latent representation
to the final output. In a standard EFN, the functions
� and F are unconstrained and typically implemented
as neural networks. The additive and energy-weighted
structure of an EFN guarantees a naturally permutation-
invariant and IRC safe output; see Ref. [28] for further
discussion.

An L-EFN extends the EFN setup by constraining �
and F to be L-Lipschitz, meaning that

k�(p̂1) � �(p̂2)k  Lkp̂1 � p̂2k,

kF (x1) � F (x2)k  Lkx1 � x2k.

This is e↵ectively a bound on the gradients of these func-
tions, though the Lipschitz constraint does not require �
and F to be everywhere di↵erentiable. In principle, one
could choose di↵erent L values for � and F , but we keep
them the same for simplicity of discussion.

If � and F are neural networks with L-Lipschitz ac-
tivations,4 this amounts to a constraint on the spectral
norm of their weight matrices W

i [39]:

�(W i) := max
h 6=0

kW
ihk2

khk2
 L. (2)

This can be enforced during training by scaling the
weight matrices as W

i
! LW

i
/�(W i) using a compu-

tationally e�cient estimation of �(W i) [39]. We focus on
the L = 1 case throughout this paper, and L-EFN should
be henceforth understood as L = 1.

For the studies in Sec. III B we use the base ar-
chitectures from the EnergyFlow package [27, 28],
implemented and trained using TensorFlow [45],
Keras [46], and Adam [47]. To enforce the 1-Lipschitz
constraint when training L-EFNs, we replace all linear
Dense layers in the networks with SpectralDense lay-
ers from the deel-lip package [48]. Unless otherwise

4
Many standard activation functions are 1-Lipschitz, such as

ReLU, LeakyReLU, and Sigmoid.
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My Experience
❖ Neural Networks set the performance limit for S/B discrimination, etc.

❖ They can model any non-linear functional transformation with enough 
depth and the correct training objectives.

❖ This is time intensive, and the “black box” problem is real.

❖ My preferred use case is to build the domain knowledge (physics) into a 
curated set of applicable observables explicitly at the front end.

❖ Then, simpler machine learning (a Boosted Decision Tree) can tell you 
which observables are most relevant and perform an optimal separation.

❖ We have found that performing cuts by hand is biased & fine tuned 
(essential sensitivity adjustments in the tails may not appear until you 
have already cut very hard and are very easy to overshoot).

(Dutta, Fantahun, Fernando, Ghosh, Horne, Kumar, Palmer, Sandick, Stengel, Snedeker, JWW)



What is a BDT?
❖ Boosted Decision Trees are a type of Supervised Machine Learning

❖ “Hypothesis Boosting” is a technique for combining a number of “weak 
learners” (here shallow Decision Trees) into a “strong learner”

❖ Each tree separates signal (class 1) 
from background (class 0 ) via 
successive forks at selected split 
points on one data feature at a time

❖ Each terminal leaf carries a score, 
totaled over trees for a result on (0,1)

❖ Later trees focus on misclassifications 
from earlier trees (boosting!) 



Why BDTs for Physics?
❖ Binary classification problems (Signal vs. Bg) are common
❖ We want to maximize discrimination power

❖ We want to eliminate bias and work efficiently

❖ We want to incorporate domain knowledge & expertise

❖ We want to understand what the machine learning learned

BDTs balance POWER with TRANSPARENCY



What is XGBoost?
❖ XGBoost (Extreme Gradient Boosting) by Tianqi Chen is a popular, 

innovative, widely available, and very fast BDT implementation

❖ Trees are built “greedily” (no backtracking), with the splitting feature, 
splitting value, and leaf score selected to optimize an objective ℒ

❖ This is guided by first (gradient) and second (Hessian) derivatives of the 
loss-function with respect to the class estimator of the nth object



XGBoost Logic
❖ Events with common features flow similarly through the decision tree, 

and “vote” for the score carried by their destination node.

❖ Events that are currently missorted (large slopes) get bigger votes.

❖ These factors are also scalable by per-event physics weights.



XGBoost Details
❖ The algorithm “works backwards”.  If leaf assignments were KNOWN, 

then one could calculate the leaf score 𝑠ℓ that optimizes the gain.

❖ The max −(𝛿"ℒ) split is selected (features AND value are SCANNED)

❖ “Regulators” limit overtraining



Binary Logistic Regression
❖ The binary logistic objective 

yields continuous 
classification scores on 0 to 1

❖ It is an explicit function with 
explicit derivatives, so the 
gradient and Hessian are 
calculated & known.

❖ A key idea is to map between 
an infinite space where scores 
are summed and a finite space 
where they are reported.



Note on Tuning / Weights
❖ A number of hyper-parameters, including the objective-level regulators 
𝛾, 𝛼, and 𝜆 are available to confront “Bias-Variance” issues

❖ In short, one must not add complexity without benefit (like 𝜒#/DOF)

❖ XGBoost also allows specification of maximal tree depth and count, with 
handles for “early stopping” or “pruning” when learning slows

❖ We balances data sets sent for training by separately normalizing the 
signal and background cross section to unity

❖ This stabilizes optimal numerical values of various hyper parameters, 
eliminates tension between intensive/extensive scaling, and induces a 
natural 𝒪(1) scale for the gradient, Hessian, and regulators



MInOS Output

❖ Signal & Background Probability Density Visualizes Separation
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MInOS Output

❖ Survival fraction of S, B as a function of the classification threshold 
are used to show achievable significance (at specified luminosity)
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MInOS Output

❖ The ROC curve is a standard metric of S/B separability

❖ A feature importance chart clarifies what is going on inside the BDT
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SMG Takeaway Messages
❖ We considered a small-mass-gap scenario that is challenging at the LHC.

❖ We were able to improve on a prior study with manual event selections.

❖ The older study was very sensitive to the sequence of applied cuts.

❖ The older study did not separate training from validation (bias).

❖ We doubled significance and increased the S/B by 50%.

❖ We found good stability across different train/test folds.

❖ We learned that it is beneficial to help the ML by making ”obvious” cuts 
by hand so that its attention can be focused on the surviving tails.

(Dutta, Fantahun, Fernando, Ghosh, Horne, Kumar, Palmer, Sandick, Stengel, Snedeker, JWW)



Data Smoothing

❖ The statistical population of events grows sparse with harder cuts

❖ Smoothing may better approximate the reality of continuum data

❖ Naive interpolation (e.g. cubic spline) can induce unphysical artifacts

❖ We want to retain sharpness where clustering is real while washing out 
jitter where statistical event densities are low

❖ A proprietary multi-step solution is adopted to meet these goals



Data Smoothing
❖ First, we do variable-width binning with equal areas (cross sections)



Data Smoothing
❖ Then, we populate narrow fixed bins via Gaussians ∝ prior widths



Data Smoothing
❖ Finally, we sum and scale to generate a smooth density of area one



Software Advertisement

• A unified pipeline for computing observables, 
plotting distributions, and applying BDT ML

• Per-event weights for independent and 
oversampled sim is handled automatically

• Code is fully decoupled from instructions via 
a unified analysis description meta-language

• The package is available for download & 
public use from GitHub:

• https://github.com/joelwwalker/AEACuS
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Application: Dark Sector Mass 
Reconstruction (Hidden Valley)
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• The Hidden Valley Scenarios were described by Strassler and Zurek leading up to 
the start of collisions at the LHC (hep-ph/0604261)

Strassler

“ A unexpected place …
 … of beauty and abundance …
 … discovered only after a long climb … ”

• Characterized by new light physics that is 
weakly coupled to the SM

• A heavy intermediary presents a high 
energy barrier to access the new sector

• Strong dynamics & confinement are typical
• A mass gap allows decays back to the SM



Hidden Valley Strong Dynamics

Walker - Sam Houston State 22

• Classic signatures include a heavy dilepton resonance and/or displaced vertices

• We are interested here in a more challenging scenario (0806.2835 Strassler)

Strassler

• The mediator is a few-TeV Z’ 
coupled to the SM by kinetic mixing

• Heavy v-Quarks are pair produced 
and they shower / hadronized

• Flavor-diagonal pions (10’s to 100’s 
of GeV) can decay back to the SM 
and shower / hadronize AGAIN … 
helicity-suppression favors b’s, taus

• Off-diagonal pions (SM NEUTRAL!!) 
are stable (DM candidates) … the 
result is semi-visible jets
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qLarge mass with long lifetime 
means very small couplings

qNegligible particle production at 
LHC
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Hidden Valley Signatures
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What we want to focus on

q Resembles QCD -
§ This explains difficulty of searches in this area.
§ Our goal is to discern just how closely it 

resembles QCD and distinguish it

q Combinatoric background –
§ Due to the large number of possible 

pairings,  reconstructing the physical dark pion 
mass is very challenging

Hidden Valley Signatures



ATLAS Search for Dark Jets

q Search for Z-prime production with 
decays into 'dark quarks' at ATLAS

q Selects signal events by 
anomalously large number of tracks 
in jets at a given 𝑃!

q Aims to reconstruct Z' mass, but not 
to see the dark pions directly

q A limit was set on the production 
cross-section times BR as a function 
of the Z’ mass

arXiv:2311.03944

ATLAS Search for Dark Jets



Dijet Resonance Techniques

qAssumed that dark pions decay into bottom quarks

qReconstructed resonances in dijet masses or monojet masses 

qThis reconstruction works much better for higher masses

A la Strassler arXiv:0806.2385

DiJet Resonance Techniques



The Combinatoric Problem
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• Mass is accessible if v-Pions are isolated and decay to 1 thick or 2 thin jets

• However, jet definitions & analysis have to be tuned to cross regimes

• As the count of proximal Pions increases, a severe combinatoric BG emerges



• Massive resonances decay into hard prongs 
• Jet definitions with fixed cones impose a scale
• Boosted objects collimate and structure is lost
• Substructure recovery techniques are complex
• Can we avoid losing resolution in the first place?
• Select proximal objects w/ scale-invariant measure

• Candidate pairs are merged, dropped, or isolated, 
according to criteria integrated into the SI measure

• SIFT unifies: a) large-radius jet finding, b) filtering of 
soft wide radiation, and c) substructure axis finding 
into a single-pass prescription for low/high boosts

• N-subjet Tree holds superposition 
of projections onto N=1,2,3 prongs

• Hard prongs are preserved to end
• The measure history discriminates 

N=1,2,3 typically above 90% AUC
• Faithful kinematic reconstruction

SIFT: Scale-Invariant Filtered Tree



SIFT-ing for Dark Matter
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• SIFT, with filtering but without dropping, may be ideal here

• It considers the event as a whole (no cones) with multi-scale sensitivity

• It creates a well-defined sequential SLICE through the combinatorics

• Since hard prongs are merged last, 
the final mergers are expected to 
hold relevant physical masses

• We can look for resonances in the 
distribution of the mass for the Nth 
pair of merged objects …



Plateau Investigation Of New Scales: PIONS

Sorted merger number

M
er

ge
r m

as
s

q Cartoon of a log plot of jet algorithm merger 
masses, sorted by mass

q  Yellow line shows a typical QCD showering
q  Green shows a Hidden Valley plus QCD 

showering
q  Red upright lines are separated by the 

hypothetical plateau length 𝑁
§ This length is a parameter defining the 

variable
q  Slope of the Blue line is the variable we want 

to search in
§ We calculate the rms of discretized 

derivatives between mergers to yield the 
variable Π!

Plateau Investigation of New Scalse (PIONS)



Exploring Merger Masses in Simulation

q This is the sorted merger mass plot 
averaged over a large number of 
events.

q Note flattening in blue curve relative 
to red

Exploring Merger Masses in Simulation



BDT Results 𝑀! = 10 GeV – Our Variables
SIFT does a good job of highlighting Masses

0 200 400 600 800 1000

SIFT M2

0.000

0.002

0.004

0.006

0.008

0.010

E
ve

nt
F
ra

ct
io

n
p
er

G
eV

(d
æ
/d

E
÷

æ
)

p
s = 14 TeV, MZ 0 = 3.2 TeV

Bright QCD

Mº = 10 GeV

Mº = 50 GeV

Mº = 200 GeV

0 100 200 300 400 500

SIFT M3

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

E
ve

nt
F
ra

ct
io

n
p
er

G
eV

(d
æ
/d

E
÷

æ
)

p
s = 14 TeV, MZ 0 = 3.2 TeV

Bright QCD

Mº = 10 GeV

Mº = 50 GeV

Mº = 200 GeV

0 50 100 150 200 250 300

SIFT M4

0.000

0.005

0.010

0.015

0.020

0.025

E
ve

nt
F
ra

ct
io

n
p
er

G
eV

(d
æ
/d

E
÷

æ
)

p
s = 14 TeV, MZ 0 = 3.2 TeV

Bright QCD

Mº = 10 GeV

Mº = 50 GeV

Mº = 200 GeV

0 50 100 150 200 250 300

SIFT M5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
ve

nt
F
ra

ct
io

n
p
er

G
eV

(d
æ
/d

E
÷

æ
)

p
s = 14 TeV, MZ 0 = 3.2 TeV

Bright QCD

Mº = 10 GeV

Mº = 50 GeV

Mº = 200 GeV



BDT Results 𝑀! = 10 GeV – All Variables
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q A kitchen-sink analysis utilizes dijet masses, 
monojet masses, particle counts, and SIFTy 
variables

q Uses information very similar to ATLAS 
analysis, improved by addition of the two 
other approaches

q AUROC score of 89%

BDT Results, 𝑀! = 10	GeV – All Variables



𝑴𝝅 Strassler
All

SIFT
All

Classic
QCD

Kitchen
Sink

10 79 83 77 89

25 89 94 87 96

50 95 98 91 99

120 98 99 93 100

200 99 99 92 100

500 96 99 73 99

Classifier scores

q SIFTy technique alone is outcompeting dijet resonance techniques of 
Strassler and broadly-classified QCD variables alone

q Putting it all together, we have strong classification power throughout 
the explored parameter space
§ Makes explicit the complementarity of these approaches

Classification Scores



Conclusion

q We can achieve this level of discrimination between QCD 
showers and new dark QCD showers with prompt decays

q We can do that in this regime, where it seems other 
techniques do not work as well
§ Information from these techniques is complimentary

q This is a valuable expansion of the reach of the LHC into the 
hidden valley parameter space

Conclusions for Dark Sector Study



SIFT: A Scale-Invariant Distance Measure
• It is worth asking whether alternative techniques could provide intrinsic 

resiliency to boosted event structure; this requires dropping the input scale R0

• It would be good to “asymptotically” recover key behaviors of Anti-kT
• Numerator should favor angular collimation;  we propose ∆𝑀2, similar to JADE
• Denominator should suppress soft pairings; we propose  Σ𝐸!", similar	to	Geneva
• Result is dimensionless, Lorentz invariant (longitudinally in the denominator), 

and free from references to external / arbitrary scales
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Image: CMS



Geometrizing the SIFT Measure

• The measure is a simple product of energy and angular-type factors
• Clustering preferences pairs that are (relatively) soft and/or collinear
• Since mutually hard (relative to other available radiation) members will defer 

clustering, prongy structure is preserved to the end and easily accessed

Several problems remain beyond the measure (read on for the solutions …)

• Extraneous wide and soft radiation is assimilated very early
• This distorts the kinematic reconstruction (mass especially)
• Moreover, there is no sense of when to *stop* clustering
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FILTERING Stray Radiation
• We know, at least, how to deal with soft, wide-angle radiation
• Take a cue from “Soft Drop” (2014 Larkoski, Marzani, Soyez, Thaler)
• This “Grooming” removes contaminants like ISR, UE, and pileup
• SD iteratively DECLUSTERS C/A, dropping softer object unless & until:

min(𝑃!#, 𝑃!$)
𝑃!# + 𝑃!$

> 𝑧%&'
Δ𝑅#$
𝑅(

)

• Typically, 𝑧%&' is 𝒪(0.1), and 𝛽 > 0 for grooming
• We propose an analog to be applied within the original clustering 

itself, expressible in the scale invariant language
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• With factors of 2 in their “natural” places the maximal effective cone size is 2
• This is a DYNAMIC boundary, and the angular size reduces for imbalanced scales 



Dropping vs. Isolating
• This leaves the question of what to do when clustering FAILS …
• There are two distinct ways to fail the filtering criterion, to be handled differently
• The scale disparity can be too extreme (soft radiation) at O(1) angular separation

• In this case the metric product is small … DROP the softer member
• Or, the angular separation can be too large (wide angle) with comparable scales

• In this case the metric product is large … ISOLATE both objects
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Clustering Phase Diagram

• The unification of clustering, filtering, and isolation also provides natural halting
• Grey contours “𝑦 = 𝛿/𝑥” mark constant values of the measure
• Isolation occurs above 𝛿 = 1; this amounts finding of variable large-radius jets
• The same factors separate clustering from dropping at “𝑦 = 𝑥”
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Evolution of the Measure
• The measure “jumps” when it crosses the natural joint count
• The transition to isolation for 𝛿 ≥ 1 is supported by simulation
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The N-Subjet TREE

• We observe that:
o hard structures are preserved
o wide concentrations of hard objects are isolated
o soft wide radiation is dropped

• However, hard prongs within a variable radius jet do still cluster
• How do we fix the interior halting criterion to avoid losing structure?
• The most interesting alternative is to not halt at all …
• We learn more about whether the prongs “want” to merge by merging!
• Hard prongs are the final objects to be merged, and we retain a superposition of 

projections onto all numbers N of prongs – suitable for computing N-subjettiness
• The record of structure is also directly imprinted on the measure history
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SIFT Measure at Final Mergers
• We are also interested in whether the SIFT measure tracks jettiness DIRECTLY
• It seems not only to do so, but to excel specifically at large boost
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W & top Mass Reconstruction
• The included filtering also gives sharp accurate mass reconstruction at large boost
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1/2 and 3/2 Discrimination with BDT
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Other Applications: Q/G discrimination
• An image-based approach to discriminating quark- and gluon- initiated jets
• Plots are an ENSEMBLE after normalization and rotation, etc.

(Dutta, Kamon, Kim, P.R. Kumar, B. Lei, B. Mallick, S. Sinha, JWW)
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Other Applications: Q/G discrimination
• Neural networks can hit ~ 80% discrimination by AUC
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• SIFT + BDT hits 80-83% at the 50 GeV benchmark



Summary and Conclusions

• SIFT is a SCALE INVARIANT clustering algorithm designed to avoid losing substructure

• FILTERING of soft-wide radiation and variable-radius isolation is fully integrated

• The measure history & TREE of N-subjet axis candidates encode structure on the fly

• There are a great variety of potential applications, including SIFT-ing the Dark Sector
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Physics Bootcamp

• Math for the first 1-2 years of physics, from our perspective, in context
• I: Arithmetic, II: Algebra, III: Trig & Vectors, IV: Differentiation, V: Integration
• For HS students and incoming majors, during (or before) the 1st semester
• We’re distributing samples now – please email to get on the list!
• jwalker@shsu.edu & jbdent@shsu.edu
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