Probing Neutrinophilic Dark Matter: From Colliders to Supernovae

Douglas Tuckler TRIUMF & Simon Fraser University

CETUP* 2024June 21, 2024

Evidence for Dark Matter

Galaxy rotation curves

These observations tell us only about the *macroscopic* properties of DM. How can we probe the *microscopic* properties i.e. mass, non-gravitational interactions?

What even is DM?

Weakly Interacting Massive Particles

- Traditional idea DM is a thermal relic
- Direct detection bounds are becoming very constraining. Push to smaller couplings. *How to get beyond the neutrino floor?*
- Alternative: go to lower masses where there are weaker bounds

Light Dark Matter and Dark Sectors

- Lee-Weinberg bound \rightarrow light thermal DM requires **new light mediators**
- Light mediators must be **SM singlets** \rightarrow **portal models**
- **Dark sectors** = DM + mediator + other SM singlet particles

Non-Thermal DM Candidates

Axions

Ultra-light/wave DM

Composite/Heavy DM

Primordial Black Holes

No DM/dark sector signal

• No dark matter signal has been observed. Where do we go from here?

- No dark matter signal has been observed. Where do we go from here?
- 1. <u>Maximally Optimistic option</u>: We need to build all the experiments.

- No dark matter signal has been observed. Where do we go from here?
- 1. <u>Maximally Optimistic option</u>: We need to build all the experiments.
- 2. <u>Maximally Pessimistic option</u>: dark matter has **no non-gravitational interactions.**

- 2. interactions.

The Windchime Project: **Gravitational Detection of Dark** Matter in the Laboratory

Small window where this could work so we better hope that DM has this mass!

• No dark matter signal has been observed. Where do we go from here? <u>Maximally Optimistic option</u>: We need to build all the experiments. <u>Maximally Pessimistic option</u>: dark matter has no non-gravitational

Estimated event rates with various detector configurations

- No dark matter signal has been observed. Where do we go from here?
- 1. <u>Maximally Optimistic option</u>: We need to build all the experiments.
- 2. <u>Maximally Pessimistic option</u>: dark matter has no non-gravitational interactions.
- 3. Searches for DM assume that DM interacts with visible stuff (e.g. photons, electrons, protons). What if DM is more elusive than we thought? What if DM only interacts with neutrinos?

Sterile Neutrino Dark Matter

• keV-scale singlet fermion that mixes only with the SM neutrinos

$$\nu_4 = \nu_s \cos \theta + \nu_a \sin \theta$$

- Sterile neutrino produced via Dodelson-Widrow Mechanism
- Indirect detection via one-loop decay $\nu_s \rightarrow \nu_a \gamma$ with X-ray line at $E_\gamma = m_4/2$

Can we save Dodelson-Widrow?

A Neutrinophilic Scalar Mediator

- Schematically, the sterile neutrino relic abundance is lacksquare $\Omega \sim \Gamma \times \sin^2(2\theta)$
- If $\Gamma = \Gamma_W$, then a large angle is required \rightarrow X-ray constraints.
- Smaller mixing angle by increasing the interaction rate? Yes! Introduce a scalar field ϕ of mass m_{ϕ} that mediates new self interactions among SM neutrinos.

$$\mathcal{L} \supset \frac{1}{2} \lambda_{\alpha\beta} \nu_{\alpha} \nu_{\beta} \phi + \text{ h.c.}$$

Larger rate than the weak interactions keeps SM neutrinos in contact for a longer period of time to build up the DM abundance!

A Neutrinophilic Scalar Mediator

• New production mode \rightarrow don't have to live on DW line!

A Neutrinophilic Scalar Mediator

• New production mode \rightarrow don't have to live on DW line!

The Mono-neutrino Signature

neutrino radiates a scalar particle and then converts to a muon via CC interactions. K. J. Kelly and Y. Zhang <u>arXiv:1901.01259</u>

Unique signature due to the neutrinophilic nature of the mediator: incoming

 ρ

- Observable: Missing transverse **momentum** carried away by ϕ
 - Similar in spirit to mono-X searches at the LHC, missing transverse momentum technique @ LDMX/DarkLight
- High energy/intensity neutrino environments are excellent to probe this signature!

LHC Forward Physics Facility

• A proposal to explore SM and B LHC detectors

- Flux of high energy neutrinos can be used to probe our model!
- Advantages of LHC neutrinos:
 - High energy neutrinos can probe higher scalar masses
 - Neutrino scattering is DIS \rightarrow smaller uncertainties

• A proposal to explore SM and BSM physics in the far forward region of

Analysis Strategy

- Relevant observables:
 - Missing transverse momentum p_T
 - Total energy of all visible final states E_{vis}
 - Highest transverse momentum of visible final state objects p_T^{max}

Cut and Count

	$\nu_{\mu} + \overline{\nu}_{\mu} \ CC$	$m_{\phi} = 1 \text{ Ge}$
$E_{\rm vis.} < 600 { m GeV}$	61%	76%
$p_T > 3 \text{ GeV}$	0.2%	26%
$p_T^{\max} < \frac{4}{3} \not \! p_T$	10^{-5}	15%

Significant reduction in bkg. *from* missing transverse momentum cut!

FPF Reach: Sterile Neutrinos

Importance of higher energy!

FPF Reach: Thermal DM

Scalar DM
$$\mathcal{L} = \frac{1}{6} y_{\chi} \chi^{3} \phi + \text{ h.c.}$$

• The neutrinophilic scalar ϕ can also be a mediator to thermal DM

Big Picture

Big Picture

 $m_{\phi} \; [\text{MeV}]$

Supernovae

- Another neutrino dense environment!
- Same process that generates $S\nu DM$ relic abundance in early universe produces $S\nu DM$ in the supernova \rightarrow excessive supernova cooling!

• Step 1: Get supernova profile $\mu_{\nu}(r), T(r), \rho(r), Y_{e}(r)$

- $\mu_{\nu_e}/T > 1 \rightarrow$ Fermi-Dirac Distributions are not exponentially suppressed! Enhanced cooling rate $\mu \neq 0 \rightarrow$ probe smaller couplings!

• $T_{SN} \sim 60 \text{ MeV} \rightarrow \text{can probe } m_{\phi} \text{ of 1 MeV up to few 100s of MeV}$. Exactly where we are missing probes!

• Step 2: Calculate active-sterile neutrino mixing in matter

• Step 3: Optical depth, or ν_4 energy loss due to scattering

• Step 4: Sterile neutrino production matrix element

Step 4.5: Profit

 $\tau = \int_{r}^{\infty} dr \, sin^{2}(2\theta_{eff}) \, \Gamma(E, r) \qquad \begin{array}{l} \text{Interaction Rate} \\ \Gamma = \Gamma_{weak} + \Gamma_{\phi} \end{array}$

 $|\mathcal{M}|^2 = 32\pi^2 \lambda^2 m_{\phi}^2 \,\delta(s - m_{\phi}^2) \sin^2\theta_{\text{eff}}(r, E_4)$

 $\Gamma(E, r), V(E, r)$

$$\times \int_{\frac{1}{2}\left(E_{1}+E_{2}+\sqrt{(E_{1}+E_{2})^{2}-m_{\phi}^{2}}\right)}{\frac{1}{2}\left(E_{1}+E_{2}-\sqrt{(E_{1}+E_{2})^{2}-m_{\phi}^{2}}\right)} dE$$

Matter effects

• Step 5: Put everything together to calculate the luminosity

 $E_4 \sin^2 \theta_{\text{eff}}(r, E_4) E_4 e^{-\tau(E_4, r)}$ Re-absorption. Sub-dominant effect

Supernova Cooling Bounds

• Observations of SN1987 bound the emission luminosity to be $L \leq 3 \times 10^{52}$ ergs/s

Big Picture

 λ

Great complementarity between different probes of neutrinophilic DM!

Big Picture

Thanks! Questions?

Back up

FPF Reach: Final State Tau Leptons

- For $\lambda_{\mu\tau} \neq 0$, the signal is a tau $+ p_T$ coming from a muon-neutrino beam.
- Only $\mathcal{O}(100)$ tau neutrinos are expected to interact with the detector. The signal will lacksquareresult in an excess of tau events compared to the SM.
- Simple analysis: count the number of signal events with a tau in the final state lacksquare

Constraints from MW Dwarf Galaxies

presence of a neutrinophilic scalar mediator!

$$\Omega \sim \Gamma \times \sin^2(2\theta)$$

• <u>Spoiler alert</u>: There is a lower limit on sterile neutrino dark matter mass in the

