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dark matter velocity distribution

• why do we care about dark 
matter velocity distributions? 

• direct detection energy 
deposited must exceed threshold

• indirect detection annihilation 
cross section can depend on v 
– velocity distribution tells us 

where and how much annihilates
– affects photon angular 

distribution
– relevant for GC, nearby subhalos
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methods for studying velocity dist.

• observation  
– use motions of stars to trace 

dark matter kinematics

• numerical simulation
– simulate a large number of 

particles interacting via gravity

• analytic methods
– make some approximations, and 

then find general connection 
between density and velocity 

GAIA

Via Lactea 2
0805.1244

Do they agree?



standard scenario

• often assumed to be a Maxwell-
Boltzmann distribution
– typical assumption for direct 

detection experiments

• motivated by isothermal models
– flat rotation curve, fixed velocity 

dispersion
– ρ(r) ∝ r-2

– may not be a good description 
– NFW often seen in simulation 
– ρ(r) = ρs [r/rs]-1 [1+(r/rs)]-2

• large N simulations show some 
consistency with MB 
– better for simulations with 

baryons (Piccirillo, et al., 2203.08853)

– see Nassim’s talk
• evidence for DM streams in MW, 

simulations 
– likely there are small-scale 

deviations (Necib, et al., 1807.02519)

• velocity dispersion has to 
decrease as radius becomes large 
– halo has to truncate

there are questions to be answered ….



outline

• how can we learn about velocity distributions using classical mechanics?

• do these analytic results match with numerical simulations?



assumptions/approximations

i. assume matter distribution is spherically symmetric

ii. assume matter distribution is static (time-averaged distribution is a good 
approximation today)

iii. assume dark matter particles subject to a central force which depends 
only on radial position
– if forces are gravitational only, then first two assumptions imply the third

iv. assume dark matter velocity distribution is isotropic (optional)



none of the assumptions are true

• generally not spherically symmetric 
– simulations generally find some level of triaxiality, even in DM-only case
– baryon distribution typically not spherically symmetric (disk, etc.)

• not static merger history is important
– simulations show noticeable features due to late mergers
– see these effects also in observation of Milky Way with GAIA

• generally anisotropic 
– dependence on velocity direction, not just speed 
– also related to merger history 

• but if none of the assumptions are true, then why make them?



goal of assumptions

• want to determine the consequences of each approximation, even if not 
exactly true

• can help understand how deviations from analytic predictions can be 
traced back to deviations from underlying assumptions 

• how important are the deviations from assumptions to coarse-grained
predictions?

• starting point from assumptions i – iii … 
• … this is essentially a central potential problem



problem in classical mechanics

• vel. dist. is a phase space density
• Liouville’s theorem …

– under canonical transformation,  
phase space volume invariant

– time translation is a canonical 
transformation 

• … so phase space density is 
invariant under time translation

• average velocity distribution is 
constant on classical path

• lets us solve for the velocity 
distribution, …

(r1,v1)

(r2,v2)

… and a nice example of how advanced 
topics in classical mechanics are relevant 
to fundamental research in astrophysics



vel. dist. and integrals of motion

• 6 integrals of motion fix path
• for central potential

– ψ1,2,3 specify orientation of path 
– E, L
– t0

• static and spherically symmetric: 
reduces to three variables

• Liouville’s theorem: indep. of t0

• isotropy: indep. of L

• f(r1, r2, r3, v1, v2, v3 ,t)
• f(ψ1, ψ2, ψ3, E, L, t0, t)

• f(r, vr, v⊥)
• f(E, L, t0)

• f(r, vr, v⊥)constrained

• f(E, L)

• f(r, v)constrained

• f(E)                          f(E) = f(E(r,v))



Eddington inversion

• much easier if isotropic                  
 f(E,L) = f(E)  

• can perform L integral

• ρ and f then related by an Abel 
integral transform

• can do an inverse transform to 
get f from ρ
– Eddington inversion (MNRAS, 76, 

572, 1916)

• given profile, get velocity-
distribution numerically
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scaling

• focus on cusp, take Φ(∞) ≫ Φ(r) 
– DM density largest (take Φ(0)=0)

• ρ(r) derived from integrating f(E) 
over E accessible at r

• f(E) derived from integrating ρ(r) 
over r inaccessible at E

• so inversion formula is exactly 
correct and unique, …

• … but only if f is a function of E 
alone everywhere

• we can find an analytic approx …. 
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near the cusp

• much simpler in the cusp
• ρ(r) ∝ r-γ

• Φ(r) ∝ r2-γ (DM-only, Φ(0)=0)
• f(E) ∝ E(γ-6)/[2(2-γ)]

• power-law matches the exact 
result at small E (small r)

• fails at large E, but that’s where 
density is small
– high-speed particles can explore 

outside the cusp
– need to know the details

power law approx.
Eddington inversion

NFW (γ=1)
log10 f(E)

log10 E

dependence on scale radius rs and scale 
density ρs determined by dimensional analysis

analytic methods give functional dependence
of f(E) on halo parameters



power laws and Boltzmann

• analytic results if ρ and Φ are
power law, so is f(E)

• standard approachMaxwell-
Boltzmann (decent fit to N-body)

• similar, but high-v tail differs 
• important for p-/d-wave annih., 

scattering of low-mass DM

• can we compare analytic results 
to N-body simulation results? 

Maxwell-Boltzmann
power law f(E) 
γ =1.24

  2 2
MBf v exp v / 2vσ

    
vσ depends on r

v2 f(v)

v/vσ



previous results

• previous study of 3 MW-sized 
halos sims (w/ or w/o baryons) 
(Lacroix, et al. 2005.03955) 

• general preference for Eddington
vs. Maxwell-Boltzmann

• but quantitatively, not great 
– χ2/dof ∼ 𝒪𝒪(10)
– f(E) varies with r by ∼ 𝒪𝒪(100)

• did not focus on innermost part 
of the cusp 
– merger effects less important 

• didn’t compare fit in different 
radial bins to f(E) 

2-4 kpc2005.03955



VL-2

• let’s compare to Via Lactea 2 
– MW-sized halo simulation,      

DM-only, 109 particles (0805.1244)

• best fit 
– gNFW, γ=1.24
– rs = 28.1 kpc 
– ρs = 0.0035 M⊙ / pc3

– convergence radius = 0.38 kpc

• 105 particles publicly available
– reasonably spherical
– well fit to gNFW out to ∼ 24 rs

Via Lactea 2
0805.1244
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testing assumptions

• can test equilibrium and isotropy

• if in equilibrium, should have q=1, 
from virial theorem

• find q=1.09 for r < 24 rs

• β is spherical anisotropy
parameter
– β=0 for isotropic vel. dist.

• note, β is a spherically-averaged 
measure of isotropy
– for VL-2, there is anisotropy, but 

averages out
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comparing to numerical simulations

• focus on range r/rs < 0.5
– largest density 
– merger effects less pronounced
– closer to isotropic, so f(E) 

• divide into 5 radial bins
• expand density in spherical 

harmonics (ℓ = 0 , 1)
• compute β and uncertainty  

– just propagate error linearly
• at a coarse-grained level, 

spherical symmetry and isotropy 
seem not unreasonable  

• how reasonable?

r̃ = r/rs



getting the velocity distribution

• divide each radial bin into two 
subregions 
– bin in energy

• compute f(E) in all 10 radial 
regions 
– compare to each other, and to 

Eddington result (2110.09653)

• distinct regions of phase space
– not related by rotation
– related by integrals of motion
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result KC, JK, LES 2309.01979



consistent with Eddington?

• note that Eddington inversion is slightly, but systematically, larger than 
data at intermediate E, systematically smaller at larger E

• f(E) from different radial bins are more consistent with each other than 
with Eddington result

• if f was a function of E everywhere, it would have to be the Eddington 
inversion result … 

• … but if not, then Eddington inversion need not hold exactly

• maybe the small difference is related to this?  Or just binning error?
• would need to understand dependence on L, and greater precision
• which means we’d need more than 105 particles



Auriga

• Auriga Project has publicly released complete data from 40 N-body 
simulations of MW-sized galaxies (2401.08750)

• includes baryon and DM-only runs 

• possible to study dependence of f on E and L, with much greater precision

• study the effect of baryons on L dependence 

• work in progress with Taylor Herbert (UH undergrad) …
– … who is applying to grad schools in the fall!



• dark matter velocity distributions can have an important impact on direct
and indirect detection strategies 

• can gain a lot of insight from analytic arguments
• can help with understanding low-mass DM,  angular distribution of GC 

excess, etc.

• useful complement to the approach of using numerical simulations

conclusion

Mahalo!



Backup Slides



velocity-dependent DM annihilation

• usual assumption is annihilation 
from s-wave state (σAv = const.)

• for many models, it scales as vn

1) p-wave annihilation (n=2)
• initial state must be L=1
• σAv ∝ v2

2) Sommerfeld-enhanced
annihilation (n=-1)
• there is a long-range attractive 

force between DM particles 
• σAv ∝ v-1 (Coulomb limit)

• say X̄X annihilate through 
intermediate JP = 0+ state

• P = (-1)L+1 if X is a fermion
• need L = odd if parity conserved

• could also have annihilation from 
a d-wave state (n=4)

• how does non-trivial velocity 
dependence affect angular 
distribution? 



number crunching

divide each radial region into two subregions
each region has same energy binning

∼ 3600 particles with r < 0.5 rs



gravitational potential in the cusp
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dark matter halos

• dark matter halos seed structure 
formation

• overdensities form small halos …. 
• … seed formation of larger halos,  

host galaxies (including MW)

• care about halo density
• large N numerical simulations

show formation of cuspy halos
– though self-interaction can yield 

cores (not this talk)
• standard fit, generalized Navarro-

Frenk-White profile (gNFW) 
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angular distribution

• annih. rate depends on f(r,v)
along line of sight

• trade v for E in integral
• power-law dep. on θ at small θ
• but there’s a degeneracy 

between n and γ
– broken at larger angle

• for a big/near enough halo (GC, 
nearby dSph), can potentially 
measure angular distribution

• degeneracy good because high-v 
tail doesn’t contribute for n ≤ 0
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Galactic Center

• excess of photons (GeV range) 
seen from Galactic Center
(Goodenough, Hooper 0910.2998, 1010.2752)

– Fermi-LAT
• could be dark matter annihilation
• or could be millisecond pulsars
• lots of work studying this 

question from several angles 

• I’ll focus on DM hypothesis
• angular distribution decent fit to

– s-wave annihilation (no v-dep.)
– gNFW w/ γ=1.2

Hooper, PPC 2022



GC excess and p-wave
• dwarf spheroidal galaxy searches 

also constrain these models
• dSphs believed to be DM 

dominated less background
• systematic uncertainties 

significant, but dSphs are starting 
to constrain GCE models

• but speeds are slower in dSphs
than GC 

• p-wave models (rate ∝ v2) could 
weaken dSph constraints

• what happens to angular dist.?

Fermi Collaboration, 1611.03184

Sculptor, JWST

Fermi



does what happens in the bulge stay in 
the bulge?

• well inside galactic bulge, 
potential dominated by baryons

• same analytic arguments to 
predict angular distribution 

• p-wave annih. dominated by 
high-v particles which see edge of 
bulge

• so even if ρ is power law to rs … 
• … potential is not, so velocity 

distribution not power law

• hard to get the angular 
distribution to match 

kpc
bulge disk us

baryonic potential
from Strigari, Trotta,
0906.5361

KK, JK, JR 2208.14002
JCAP11 (2022) 030



Abel integral transform and inverse
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Eddington inversion as an Abel integral 
transform
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canonical transformations and 
symplectic Jacobians
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time translation as an infinitesimal 
canonical transformation

       
         

i i i i i i

i i i i i i

X t x t dt x t x t dt x dt( H / p )

P t p t dt p t p t dt p dt H / x

       

       





2 2
ij i j i j

2 2
i j ij i j

2 2
ij i j i jT

2 2
i j ij i j

2 2
ij i j i jT

2 2
i j ij

dt H / p x dt H / p p
M

dt H / x x dt H / x p

dt H / x p dt H / x x
M

dt H / p p dt H / p x

dt H / x p dt H / x x
M JM

dt H / p p dt H

δ
δ

δ
δ

δ
δ

                    
                    

       


    

2 2
ij i j i j

2 2
i j i j ij i j

2 2 2 2
ij i j i j i j ij

2 2
i j ij i j

0 1 dt H / p x dt H / p p
1 0/ p x dt H / x x dt H / x p

dt H / x p dt H / x x dt H / x x dt H
dt H / p p dt H / p x

δ
δ

δ δ
δ

                                  
                         

 

i j
2 2

ij i j i j

3 3 2

3 3

/ x p
dt H / p x dt H / p p

0
O dt

0

δ





               
      

I
I



include baryons


	Analytic Results on Dark Matter Velocity Distributions
	collaborators
	dark matter velocity distribution
	methods for studying velocity dist.
	standard scenario
	outline
	assumptions/approximations
	none of the assumptions are true
	goal of assumptions
	problem in classical mechanics
	vel. dist. and integrals of motion
	Eddington inversion
	scaling
	near the cusp
	power laws and Boltzmann
	previous results
	VL-2
	testing assumptions
	comparing to numerical simulations
	getting the velocity distribution
	result
	consistent with Eddington?
	Auriga
	Slide Number 24
	Backup Slides
	velocity-dependent DM annihilation
	number crunching
	gravitational potential in the cusp
	dark matter halos
	angular distribution
	Galactic Center
	GC excess and p-wave
	does what happens in the bulge stay in the bulge?
	Abel integral transform and inverse
	Eddington inversion as an Abel integral transform
	canonical transformations and �symplectic Jacobians
	time translation as an infinitesimal canonical transformation
	include baryons

