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I. TheViability of Ultralight Bosonic Dark Matter in Dwarf Galaxies
Work done in collaboration with Savvas Koushiappas and Matthew Walker
Phys.Rev. D 106,063010

2. 3D Jeans Analyses
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43. Additional material: Particle motivation

ULTRALIGHT DARK MATTER

= Ultralight bosonic dark matter is a boson of mass m~1022 eV

= Often written as my; = m/ 1022 eV
= Motivated by non QCD axions, GUT scale physics & string theory

= Quantum effects become macroscopic: ~kpc scale
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ULTRALIGHT DARK MATTER

= Why is this interesting!?
= ACDM is well tested at large scales, but not small scales

= Small scale problems: cores vs cusps, missing satellites, too big to fail
= Baryons could explain this, but because of the complexity of baryons it’s hard to be sure

= Dwarf galaxies are perfect tests



ULTRALIGHT DARK MATTER

= Simulated with the Schrodinger-Poisson Equations:
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V2V =4zG(p - p).

= Describes a self-gravitating quantum superfluid

= No viscosity, flows without losing kinetic energy

Schive et al., Phys. Rev. Lett. 113,261302 (2014).
Mocz et al., Phys. Rev. D 97,083519 (2018).



ULTRALIGHT DARK MATTER

= Simulations have found an
analytical form for the core
(Schive et al. 2014, Mocz et
al. 2018)

= Soliton core depends on
particle mass and halo
mass

P/ Pmo

Schive et al., Phys. Rev. Lett. 113,261302 (2014).
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ULTRALIGHT DARK MATTER

= Simulations have found an
analytical form for the core
(Schive et al. 2014, Mocz et
al. 2018)

= Soliton core depends on
particle mass and halo
mass

Schive et al., Phys. Rev. Lett. 113,261302 (2014).
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ANALYSIS

= Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential = Projected (2D) velocity dispersion

= Past work has done this with CDM, WIMPs

= Run with MultiNest choosing a:
= Dark matter density profile

= Particle mass, halo mass, velocity anisotropy



JEANS ANALYSIS

Binney and Tremaine, Galactic Dynamics: Second Edition (2008).
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JEANS ANALYSIS

Collisionless Boltzmann equation:
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Binney and Tremaine, Galactic Dynamics: Second Edition (2008).
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JEANS ANALYSIS

Observables!?

Stellar distribution function: P(star at location x per unit volume)

v(x) = /d3v f(x,v)

Velocity dispersion tensor:

f(x,v)

= [dolo-n)w-o)S

= V;Vj — V;V;

Binney and Tremaine, Galactic Dynamics: Second Edition (2008).
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JEANS ANALYSIS

Assuming a spherical and time-independent system,
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Spherical Jeans Equation

Binney and Tremaine, Galactic Dynamics: Second Edition (2008).



44. Additional material: JEANS

JEANS ANALYSIS

Assuming a spherical and time-independent system,
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Binney and Tremaine, Galactic Dynamics: Second Edition (2008).



44. Additional material: |JEANS

JEANS ANALYSIS
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ANALYSIS

el T T ewe- 22120

z=8.0
—-Z2=2.2
---z=0.9

z=0.0 (res x8) 7
--z2=0.0
--- Soliton collision
--- CDM (z = 8.0) T

—_
o
[o2]

—_
o
)

"eMe O P

—_
(=)
[e)}

E10° 4

E 10* ]

10° . -R'& 1

08 'A‘ \l
-

10’ --1-(;_1 E—— .,_1_(1)1 : ;
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ANALYSIS

Soliton core only

NFW is physically unconstrained

Gonzalez-Morales, Marsh,
Pefarrubia, and Urenha-Lopez,
MNRAS 472, 1346 (2017)

NFW parameters chosen
independent of soliton parameters

Most general, but mass is not necessarily
conserved

Safarzadeh and Spergel, Ap)
893,21 (2020).

Parameterized transition with
density continuity

Transition radius is allowed to vary

Marsh Pop, 2015, MNRAS, 451,
2479

Density continuity,
Mass conservation
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a
given particle mass

Robles, Bullock, and
Boylan-Kolchin MNRAS
483,289 (2019), 1807.06018.




ANALYSIS

Soliton core only

NFW is physically unconstrained

Gonzalez-Morales, Marsh,
Pefarrubia, and Urenha-Lopez,
MNRAS 472, 1346 (2017)

NFW parameters chosen
independent of soliton parameters

Most general, but mass is not necessarily
conserved

Safarzadeh and Spergel, Ap)
893,21 (2020).

Parameterized transition with
density continuity

Transition radius is allowed to vary

Marsh Pop, 2015, MNRAS, 451,
2479

Density continuity,
Mass conservation
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a
given particle mass

Very light halos can’t form

Robles, Bullock, and
Boylan-Kolchin MNRAS
483,289 (2019), 1807.06018.




DATA

Data from:

" Walker, Mateo, and Olszewski,Ap] 137, 3100 (2009).

"  Walker, Mateo, Olszewski, Bernstein, Sen, and Woodroofe,Ap|S 171, 389 (2007).
= Spencer, Mateo, Olszewski,Walker, McConnachie, and Kirby,Ap] 156,257 (2018).
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RESULTS
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RESULTS
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RESULTS

= Degeneracy between
particle mass and halo mass
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RESULTS

= Degeneracy between
particle mass and halo mass

= Cuspier profiles will have
more mass concentrated in
the center
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Soliton, may =0.1
NFW, log(M), /M) =10

p(r)[Ms /kpc]

M. Safarzadeh and D.N. 10 75 .
Spergel,
Ap) 893,21 (2020).
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ANISOTROPY

" Velocity anisotropy f, is a
measure of the difference
between tangential and radial
velocity dispersion

log10(m32)

l0g10(m32)

o

o

10910(M200/M o)

10910(M200/M o)

Fornax Carina Sculptor
i ™
=3 ot
il:-% k
4 Model C 4 Model C Model C
JJ'I_LL NFW NFW h NFW
Sextans Draco Ursa Minor
-n \ :
I - _
- n
r h
4 Model C Model C 4 Model C ;
NFW ﬂi NFW h NFW
8 9 10 8 9 10 8 9 10

10910(M200/M o)

r—0.25

—0.50

-0.75

—1.00

log1o(1 — Ba)

Tangentially
biased

Radially
biased



" Velocity anisotropy f, is a
measure of the difference

a/(GM/a)""

ANISOTROPY

between tangential and radial

velocity dispersion
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RESULTS

= Degeneracy between
particle mass and halo mass

= Probability of 6 objects that
mass merging with a Milky
Way sized halo is very small
(P~10%), would need to be

an atypical galaxy
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RESULTS: CENTRAL BLACK HOLE

" Add a black hole (point mass)
to the dwarf galaxy center



RESULTS: CENTRAL BLACK HOLE
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RESULTS: CENTRAL BLACK HOLE

Model C with central BH [0 Model C

= Add a black hole (point mass) Fomax Carina Sculptor
to the dwarf galaxy center ' ’
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51. Additional material: unbinned 34
52. Additional material: Multinest

EVIDENCE
= Evidence is the sum of likelihood 3.0 & {x Y}={NFW, Model C}
over the prior volume - ¢ {x Y}={NFW, Model C + BH}

{x, Y}={NFW, NFW + BH} +

¢ {x, Y}={Model C, Model C + BH}
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51. Additional material: unbinned
52. Additional material: Multinest

EVIDENCE

= Evidence is the sum of likelihood
over the prior volume

® Note that Ursa Minor has the
smallest number of stars, and is the
most irregular of the dwarfs
analyzed
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= Particle masses of m<1020 eV are not kinematically viable in dwarfs unless:
= The Milky Way is an atypical halo.

= All dwarfs contain a central black hole of mass ~0.1% their halo mass.
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WHAT'S THE TAKE AWAY?

= Particle masses of m<1020 eV are not kinematically viable in dwarfs unless:
= The Milky Way is an atypical halo.

= All dwarfs contain a central black hole of mass ~0.1% their halo mass.

® Particle masses of m>10-29 eV are allowed, but more CDM-like.

= There is no strong preference for any of the models in most dwarfs



I. TheViability of Ultralight Bosonic Dark Matter in Dwarf Galaxies
Work done in collaboration with Savvas Koushiappas and Matthew Walker
Phys.Rev.D 106,063010

2. 3D Jeans Analyses



3D JEANS ANALYSIS

2 > R2\ wv.c2rdr
2 — 1 . *Mr
UIOS(R) I* (R) /]; ( B 7“2 ) 7“2 B R2

Louis E. Strigari et al 2007 ApJ 669 676
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Louis E. Strigari et al 2007 ApJ 669 676



3D JEANS ANALYSIS
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61. Additional material: Generalized nfw
—— Sgr 3D
—— Sgr LOS

3D JEANS ANALYSIS

Preliminary results with
mock distance data
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—— Sgr 3D
—— Sgr LOS

3D JEANS ANALYSIS

Preliminary results with
mock distance data
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61. Additional material: Generalized nfw

—— Sgr 3D
—— Sgr LOS
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3D JEANS ANALYSIS
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3D JEANS ANALYSIS

Uncertainties in radial and tangential velocities are highly dependent on uncertainty in

distance measurements
op =0.1kpc op = 1.5kpc
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