Constraining Dwarf Galaxy Dark Matter Distributions: Spherical Jeans Analyses for Line-of-Sight and 3D Velocity Data

Isabelle Goldstein

CETUP WORKSHOP 2024

JUNE 20, 2024

I. The Viability of Ultralight Bosonic Dark Matter in Dwarf Galaxies

Work done in collaboration with Savvas Koushiappas and Matthew Walker Phys. Rev. D **106**, 063010

2. 3D Jeans Analyses

- Ultralight bosonic dark matter is a boson of mass m~10⁻²² eV
 - Often written as $m_{22} = m / 10^{-22} eV$

- Ultralight bosonic dark matter is a boson of mass m~10⁻²² eV
 - Often written as m₂₂ = m / 10⁻²² eV
- Motivated by non QCD axions, GUT scale physics & string theory

- Ultralight bosonic dark matter is a boson of mass m~10⁻²² eV
 - Often written as m₂₂ = m / 10⁻²² eV
- Motivated by non QCD axions, GUT scale physics & string theory
- Quantum effects become macroscopic: ~kpc scale

$$\lambda_{\rm dB} \equiv \frac{2\pi}{mv} = 0.48 \,\rm kpc \left(\frac{10^{-22} \,\rm eV}{m}\right) \left(\frac{250 \,\rm km/s}{v}\right)$$

- Why is this interesting?
 - ΛCDM is well tested at large scales, but not small scales
 - Small scale problems: cores vs cusps, missing satellites, too big to fail

- Why is this interesting?
 - ΛCDM is well tested at large scales, but not small scales
 - Small scale problems: cores vs cusps, missing satellites, too big to fail
- Baryons could explain this, but because of the complexity of baryons it's hard to be sure
- Dwarf galaxies are perfect tests

Simulated with the Schrödinger-Poisson Equations:

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + m V \psi,$$
$$\nabla^2 V = 4\pi G(\rho - \bar{\rho}),$$

- Describes a self-gravitating quantum superfluid
 - No viscosity, flows without losing kinetic energy

Schive et al., Phys. Rev. Lett. **113**, 261302 (2014). Mocz et al., Phys. Rev. D **97**, 083519 (2018).

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
 - Soliton core depends on particle mass and halo mass

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
 - Soliton core depends on particle mass and halo mass

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

Apj 893, 21 (2020).

Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

Past work has done this with CDM, WIMPs

Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

- Past work has done this with CDM, WIMPs
- Run with MultiNest choosing a:
 - Dark matter density profile
 - Particle mass, halo mass, velocity anisotropy

Collisionless Boltzmann equation:

$$\frac{\partial f}{\partial t} + \dot{\mathbf{q}} \frac{\partial f}{\partial \mathbf{q}} + \dot{\mathbf{p}} \frac{\partial f}{\partial \mathbf{p}} = 0$$

Observables?

Stellar distribution function: P(star at location x per unit volume)

$$u(\mathbf{x}) \equiv \int d^3 v \, f(\mathbf{x}, \mathbf{v})$$

Velocity dispersion tensor:

$$\sigma_{ij}^2(\mathbf{x}) \equiv \int d^3 v \, (v_i - \bar{v}_i)(v_j - \bar{v}_j) \frac{f(\mathbf{x}, \mathbf{v})}{\nu(\mathbf{x})}$$
$$= \overline{v_i v_j} - \overline{v}_i \overline{v}_j$$

Assuming a spherical and time-independent system,

$$\left|\frac{d(\nu \overline{v_r^2})}{dr} + 2\frac{\beta}{r}\nu \overline{v_r^2} = -\nu \frac{d\phi}{dr}\right|$$

Spherical Jeans Equation

Assuming a spherical and time-independent system,

$$\left|\frac{d(\nu \overline{v_r^2})}{dr} + 2\frac{\beta}{r}\nu \overline{v_r^2} = -\nu \frac{d\phi}{dr}\right|$$

$$\beta_a \equiv 1 - \frac{\overline{v_\theta^2} + \overline{v_\phi^2}}{2\overline{v_r^2}}$$

Binney and Tremaine, Galactic Dynamics: Second Edition (2008).

 $\frac{d(\nu \overline{v_r^2})}{dr} + 2\frac{\beta}{r}\nu \overline{v_r^2} = -\nu \frac{d\phi}{dr}$

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

	Soliton core only	NFW is physically unconstrained	González-Morales, Marsh, Peñarrubia, and Ureña-López, MNRAS 472 , 1346 (2017)
A	NFW parameters chosen independent of soliton parameters	Most general, but mass is not necessarily conserved	Safarzadeh and Spergel, ApJ 893 , 21 (2020).
В	Parameterized transition with density continuity	Transition radius is allowed to vary	Marsh Pop, 2015, MNRAS, 451 , 2479
С	Density continuity, Mass conservation M _{halo} = M _{core} + M _{NFW}	Total mass = core defining mass Enforces a minimum halo mass for a given particle mass	Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), 1807.06018.

	Soliton core only	NFW is physically unconstrained	González-Morales, Marsh, Peñarrubia, and Ureña-López, MNRAS 472 , 1346 (2017)
A	NFW parameters chosen independent of soliton parameters	Most general, but mass is not necessarily conserved	Safarzadeh and Spergel, ApJ 893 , 21 (2020).
В	Parameterized transition with density continuity	Transition radius is allowed to vary	Marsh Pop, 2015, MNRAS, 451 , 2479
С	Density continuity, Mass conservation M _{halo} = M _{core} + M _{NFW}	Total mass = core defining mass Enforces a minimum halo mass for a given particle mass Very light halos can't form	Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), 1807.06018.

DATA

Data from:

- Walker, Mateo, and Olszewski, ApJ 137, 3100 (2009).
- Walker, Mateo, Olszewski, Bernstein, Sen, and Woodroofe, ApJS 171, 389 (2007).
- Spencer, Mateo, Olszewski, Walker, McConnachie, and Kirby, ApJ 156, 257 (2018).

DATA

 Degeneracy between particle mass and halo mass

- Degeneracy between particle mass and halo mass
 - Cuspier profiles will have more mass concentrated in the center

ANISOTROPY

• Velocity anisotropy β_a is a measure of the difference between tangential and radial velocity dispersion

ANISOTROPY

29

 Degeneracy between particle mass and halo mass

 Probability of 6 objects that mass merging with a Milky Way sized halo is very small (P~10⁻⁶), would need to be an atypical galaxy

RESULTS: CENTRAL BLACK HOLE

 Add a black hole (point mass) to the dwarf galaxy center

RESULTS: CENTRAL BLACK HOLE

Model C with central BH

- Add a black hole (point mass) to the dwarf galaxy center
- Allows for lower particle mass, lower halo mass posteriors

32

Model C

RESULTS: CENTRAL BLACK HOLE

- Add a black hole (point mass) to the dwarf galaxy center
- Allows for lower particle mass, lower halo mass posteriors
- Requires proportionally massive black holes

[S. M. Koushiappas, J. S. Bullock, and A. Dekel, MNRAS **354**, 292 (2004), astro-ph/0311487.]

8

10

 $\log_{10}(M_{200}/M_{\odot})$

8

9

 $\log_{10}(M_{200}/M_{\odot})$

10

8

9

 $\log_{10}(M_{200}/M_{\odot})$

10

33

Model C

3.0

- 2.5

- 2.0

- 1.5 10010(m₂₂)

- 1.0

0.5

- 0.0

Model C with central BH

EVIDENCE

 Evidence is the sum of likelihood over the prior volume

EVIDENCE

- Evidence is the sum of likelihood over the prior volume
- Note that Ursa Minor has the smallest number of stars, and is the most irregular of the dwarfs analyzed

WHAT'S THE TAKE AWAY?

- Particle masses of m<10⁻²⁰ eV are not kinematically viable in dwarfs unless:
 - The Milky Way is an atypical halo.
 - All dwarfs contain a central black hole of mass ~0.1% their halo mass.

WHAT'S THE TAKE AWAY?

- Particle masses of m<10⁻²⁰ eV are not kinematically viable in dwarfs unless:
 - The Milky Way is an atypical halo.
 - All dwarfs contain a central black hole of mass ~0.1% their halo mass.
- Particle masses of m>10⁻²⁰ eV are allowed, but more CDM-like.

WHAT'S THE TAKE AWAY?

- Particle masses of m<10⁻²⁰ eV are not kinematically viable in dwarfs unless:
 - The Milky Way is an atypical halo.
 - All dwarfs contain a central black hole of mass ~0.1% their halo mass.
- Particle masses of m>10⁻²⁰ eV are allowed, but more CDM-like.

There is no strong preference for any of the models in most dwarfs

I. The Viability of Ultralight Bosonic Dark Matter in Dwarf Galaxies

Work done in collaboration with Savvas Koushiappas and Matthew Walker Phys. Rev. D 106, 063010

2. 3D Jeans Analyses

$$\sigma_{\rm los}^2(R) = \frac{2}{I_*(R)} \int_R^\infty \left(1 - \beta \frac{R^2}{r^2}\right) \frac{\nu_* \sigma_r^2 r dr}{\sqrt{r^2 - R^2}}$$

Louis E. Strigari et al 2007 ApJ 669 676

Louis E. Strigari et al 2007 ApJ 669 676

Louis E. Strigari et al 2007 ApJ 669 676

61. Additional material: Generalized nfw

Uncertainties in **radial and tangential velocities** are highly dependent on uncertainty in

distance measurements