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ULTRALIGHT DARK MATTER

¡ Ultralight bosonic dark matter is a boson of mass m~10-22 eV

¡ Often written as m22 = m / 10-22 eV

¡ Motivated by non QCD axions, GUT scale physics & string theory 

¡ Quantum effects become macroscopic: ~kpc scale
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1. INTRODUCTION

The astronomical evidence for the existence of dark matter, accumulated over decades, is

rich and compelling (e.g., Zwicky 1933, Smith 1936, Rubin & Ford 1970, Freeman 1970,

Ostriker & Peebles 1973, Hoekstra et al. 2004, Clowe et al. 2006, Bennett et al. 2013,

Aghanim et al. 2020). Yet, the identity and basic properties of dark matter remain shrouded

in mystery. An example is the constituent’s mass: proposals range from ultra-light ⇠ 10�22

eV (Hu, Barkana & Gruzinov 2000) to astronomical ⇠ 10M� (Bird et al. 2016, Garcia-

Bellido & Ruiz Morales 2017, Sasaki et al. 2018, Jedamzik 2020). In this vast spectrum,

there is nonetheless a useful demarcation point. Dynamical measurements tell us the dark

matter mass density in the solar neighborhood is about 0.4GeV cm�3. 1 From this, one

can deduce the average inter-particle separation, given a dark matter particle mass. We

can compare it against the de Broglie wavelength of the particle:

�dB ⌘ 2⇡
mv

= 0.48 kpc

✓
10�22 eV

m

◆✓
250 km/s

v

◆
= 1.49 km

✓
10�6 eV

m

◆✓
250 km/s

v

◆
,

(1)

where v is the velocity dispersion of the galactic halo, and m is the dark matter particle

mass, for which two representative values are chosen for illustration. 2 It can be shown

that the de Broglie wavelength exceeds the inter-particle separation if m⇠< 30 eV. In other

1A range of local dark matter density values have been reported in the literature: e.g.
0.008M�/pc3 = 0.3GeV/cm3 (Bovy & Tremaine 2012), 0.0122M�/pc3 = 0.46GeV/cm3 (Siverts-
son et al. 2018), 0.013M�/pc3 = 0.49GeV/cm3 (McKee et al. 2015).

2In this article, ~ and c are set to unity. In most cases, restoring ~ is a matter of replacing m

by m/~. For instance, the de Broglie wavelength is �dB = 2⇡~/(mv) = h/(mv). The Compton
wavelength is �Compton = 2⇡~/(mc).

2 Hui

43. Additional material: Particle motivation
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ULTRALIGHT DARK MATTER

¡ Why is this interesting?

¡ ΛCDM is well tested at large scales, but not small scales 

¡ Small scale problems: cores vs cusps, missing satellites, too big to fail 

¡ Baryons could explain this, but because of the complexity of baryons it’s hard to be sure 

¡ Dwarf galaxies are perfect tests
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¡ Simulated with the Schrödinger-Poisson Equations:

¡ Describes a self-gravitating quantum superfluid 

¡ No viscosity, flows without losing kinetic energy

ULTRALIGHT DARK MATTER

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).
Mocz et al., Phys. Rev. D 97, 083519 (2018). 
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the scale of the de Broglie wavelength. However, fortu-
nately the amplitude of the oscillations in the potential is
not order unity, rather it is suppressed by a factor of ðℏ=mÞ2
by the ∇2 operator in the Poisson equation, and likewise in
the force field the amplitude is suppressed by a factor of
ðℏ=mÞ. Therefore, these quantities are hypothesized here to
converge to the classical solution without nonlocal manipu-
lation/smoothing, which is a necessary requirement for the
SP–VP correspondence to hold under time evolution. It is
further illustrative to consider the time evolution of this
simple example of two Gaussians, assuming no self-
gravity. In the classical case the two Gaussians will pass
through each other and continue traveling with their initial
velocity, while in the quantum case the two Gaussians will
exhibit interference as they pass, but also experience
dispersion under time evolution. As ℏ=m → 0, the dis-
persion of the Gaussian wave packets also goes to 0, which
is necessary for the SP–VP correspondence to hold. This
example illustrates some of the nature of the SP–VP
correspondence as well as why it may be intuitively
expected (nonconvergence of density field, ðℏ=mÞ2 con-
vergence of potential).
In the present work, we are interested in exploring

numerically in 1D, 2D, and 3D the nature of the SP–VP
correspondence for complicated test problems which have
caustics, shell-crossings, or noncold initial conditions. Of
great interest is to test whether we can recover the classical
potential V in a formal converged sense, with convergence
rate faster than ðℏ=mÞ1 (so that the force field is also
guaranteed to converge to the classical limit as ℏ=m → 0).
A related question is what happens to nonlinear quantum
structures as ℏ=m → 0.
We would like to understand the SP–VP correspondence

under time evolution for several reasons. First, the corre-
spondence offers a way of understanding the emergence of
classical behavior from a quantum system as ℏ → 0.
Additionally, convergence guarantees that one can accu-
rately solve the SP equations as a low-memory method to
numerically simulate the rich phase-space structure of the
6D VP equations. Third, it is a way to learn about the
limiting behavior of superfluid Bose-Einstein condensate
systems, for example, in the case of axion dark matter,
where the boson mass m is unknown. FDM–CDM corre-
spondence can be thought of as a special case of the SP–VP
correspondence discussed here, since taking ℏ=m → 0 is
equivalent to taking the de Broglie wavelength of the
superfluid (i.e., the scale at which the quantum effects of
the superfluid are evident) to zero. For the claim that the
classical limit is recovered to be true, it remains to be
demonstrated that the nonsmoothed potential and force
field approach the classical limit in a formal converged
sense so that baryonic matter, which is coupled to the dark
matter only through the gravitational potential, would
experience identical forces.
The paper is organized as follows. In Sec. II we lay out

the theoretical background for the SP and VP equations. In

Sec. III we describe our numerical simulation method. We
carry out and discuss a number of simulations, including
full 3D cosmological simulations of FDM at different
boson masses in Sec. IV. These are compared to classical
N-body simulations of collisionless CDM. Our concluding
remarks are offered in Sec. V. We provide a heuristic
discussion in Appendix A on the process of violent
relaxation of collisionless self-gravitating systems, which
have concepts relevant to understand what is happening in
our cosmological simulations of halos.

II. THEORETICAL BACKGROUND

A. Schrödinger-Poisson

The SP equations describe a self-gravitating quantum
superfluid (such as FDM):

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þmVψ ; ð1Þ

∇2V ¼ 4πGðρ − ρ̄Þ; ð2Þ

where ψ is the wave function describing the scalar field
boson in the nonrelativistic limit, ρ≡ jψ j2 is the density, ρ̄
is the volume-averaged density, V is the gravitational
potential and m is the boson mass. It is prudent to note
that we are making use of the so called “Jeans Swindle”
[both here and in Eq. (11)] by sourcing the potential only by
the overdensity.
An equivalent formulation of the SP equations is the

Madelung [30] fluid form, which can be useful when
interpreting some of the results. Decomposing the wave
function as

ψ ¼ ffiffiffi
ρ

p
eiS=ℏ ð3Þ

and defining a velocity as the gradient of the phase:

u≡∇S
m

; ð4Þ

the Schrödinger equation can then be written as

∂ρ
∂t þ∇ · ðρuÞ ¼ 0; ð5Þ

∂u
∂t þ ðu ·∇Þu ¼ −∇V −∇VQ; ð6Þ

where

VQ ≡ −
ℏ2

2m2

∇2 ffiffiffi
ρ

p
ffiffiffi
ρ

p : ð7Þ

Aside from the quantum potential term VQ, the evolution
equations look like that of classical evolution of individual

SCHRÖDINGER-POISSON–VLASOV-POISSON … PHYS. REV. D 97, 083519 (2018)

083519-3
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Cosmological simulations of light-dark matter (Schive
et al. 2014b) find that the density profile of the inner-
most central region of the halos at redshift z = 0 follows

⇢s(r) =
1.9 (10 m22)�2r�4

c

[1 + 9.1 ⇥ 10�2(r/rc)2]8
109M�kpc�3 , (1)

where m22 ⌘ m/10�22eV is the DM particle mass and
rc is the radius at which the density drops to one-half
its peak value for a halo at z = 0. This relationship is
accurate to 2% in the range 0 < r < 3rc.
The enclosed mass at a given radius r is:

M(< r) =
π r

0
4⇡⇢s(r 0)r 02dr 0 . (2)

Mc ⌘ M(< rc) gives approximately the central core mass.
This definition of core mass, makes up about 25% of the
total soliton mass, and M(< 3 rc) makes up about 95%
of the total soliton mass. Core mass or radius and the
total mass of the halo, Mh, hosting the galaxy are related
(Schive et al. 2014b):

Mc ⇡ 1
4 M1/3

h (4.4 ⇥ 107m�3/2
22 )2/3 , (3)

rc ⇡ 1.6m�1
22

⇣ Mh

109M�

⌘�1/3
kpc . (4)

Beyond the core radius, the halo profiles resemble
Navarro-Frenk-White (NFW, Navarro et al. 1997) pro-
files (Schive et al. 2014a). We model each halo to have a
central solitonic core profile which smoothly transitions
to an NFW profile (Mocz et al. 2018) around r = 3 rc.
We show the modeled profiles in Figure 1. Thin solid
lines show the solitonic core profiles for di↵erent axion
masses. The thin black line shows the NFW profile of
a 1010 M� halo at z = 0. The thick dashed lines show
the full halo profile that is a combination of the solitonic
profile transitioning to an NFW profile of mass 1010 M�
around r = 3rc.

3. COMPARISON TO OBSERVATIONAL DATA

For a pressure supported system, one can use the
Collisionless Boltzmann Equation (CBE) to related the
six-dimensional (6D) phase-space distribution function,
f (Ær, Æv), of a tracer particle, to the underlying gravita-
tional potential (Binney & Tremaine 2008). For nearby
dwarfs we only have access to two spatial dimensions
and one velocity dimension along the line of sight. dSph
kinematic studies therefore rely on Jeans equations by
integrating the CBE over velocity space:

1
⌫

d
dr

(⌫v̄2
r ) +

2
r
(v̄2

r � v̄2
✓ ) = �GM(r)

r2 , (5)

where ⌫(r) is the stellar density profile, and v̄2
r and v̄2

✓ are
components of the velocity dispersion in radial and tan-
gential directions, respectively. The velocity anisotropy
quantified by the ratio �ani(r) ⌘ 1 � v̄2

✓ (r)/v̄2
r (r) is un-

constrained by data. Di↵erent anisotropic profiles can
fit the projected velocity dispersion profile observed for

Figure 1. shows the modeled halo profiles of a 1010 M� halo

at z = 0 for di↵erent values of m22. Solid lines show the

solitonic cores choice of m22 (thin solid lines) and the thick

dashed lines show the full halo profile that is a combination

of the solitonic profile transitioning to an NFW profile of

mass 1010 M� at around r = 3rc .

the Fornax dSph, however, despite the presence of the
degeneracy between mass and anisotropy, the predicted
enclosed mass within about the dSph half-light radius is
the same among the di↵erent Jeans models (Walker &
Penarrubia 2011).
We take the enclosed mass within half-mass radius of

most of the UFDs and dSph systems from Wolf et al.
(2010), where the two are related to the observed line of
sight velocity dispersion by,

M1/2 ⇡
3 < �2

los > r1/2

G
. (6)

The brackets indicate a luminosity-weighted average and
r1/2 is the 3D deprojected half-light radius. The data
points for Draco II and Triangulum II are from Martin
et al. (2016a) and Martin et al. (2016b), respectively.
The measured slopes come from recent observations

that some dSphs have more than one stellar popula-
tion. Each population independently trace the underly-
ing gravitational potential. Battaglia et al. (2006, 2011)
report the detection of a two component stellar system
for both dSphs such that a relatively metal-rich subcom-
ponent is more centrally concentrated with small veloc-
ity dispersion and a separate metal-poorer, kinemati-
cally hotter, more extended subcomponent. Walker &
Penarrubia (2011) measure the half-light radii and ve-
locity dispersions of both subcomponents in Fornax and
Sculptor, and e↵ectively resolve two discrete points in a
mass profile dominated by dark matter. Walker & Pe-
narrubia (2011) report the measured slope of the mass

M. Safarzadeh and D. N. Spergel, 
ApJ 893, 21 (2020).
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ANALYSIS 

¡ Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

¡ Past work has done this with CDM, WIMPs

¡ Run with MultiNest choosing a:

¡ Dark matter density profile

¡ Particle mass, halo mass, velocity anisotropy 

3D gravitational potential à Projected (2D) velocity dispersion
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Observables? 
Stellar distribution function:  P(star at location x per unit volume)

Velocity dispersion tensor:
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Binney and Tremaine, Galactic Dynamics: Second Edition (2008). 

Assuming a spherical and time-independent system, 
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Anisotropy parameter:

44. Additional material: JEANS



JEANS ANALYSIS296 Chapter 4: Equilibria of Collisionless Systems

Figure 4.4 Line-of-sight velocity dispersion as a function of projected radius, from spa-
tially identical systems that have different dfs. In each system the density and potential
are those of the Hernquist model and the anisotropy parameter β of equation (4.61) is
independent of radius. The curves are labeled by the relevant value of β. In the isotropic
system, the velocity dispersion falls as one approaches the center (cf. Problem 4.14).

A contrasting case of almost equal simplicity is β = − 1
2 , corresponding to

σ2
θ = σ2

φ = 3
2σ

2
r . Then equation (4.66) becomes

1

2π2

ν

r
=

∫ Ψ

0
dE f1(E)(Ψ − E). (4.70)

Differentiating through twice with respect to Ψ we have

f1(Ψ) =
1

2π2

d2(ν/r)

dΨ2
(β = − 1

2 ). (4.71)

In the case of the Hernquist model, this yields

f1(E) =
1

4π3(GMa)2
d2

dẼ2

(
Ẽ5

(1 − Ẽ)2

)

, (4.72)

which one may easily show is non-negative for Ẽ ≤ 1.
Figure 4.4 shows the line-of-sight velocity dispersion σ‖ of a Hernquist

model as a function of projected radius when the df is (i) ergodic (eq. 4.50)
labeled “0”; (ii) radially biased (eqs. 4.62 and 4.69) labeled 1

2 , and (iii)
tangentially biased (eqs. 4.62 and 4.72) labeled − 1

2 . In the radially biased
system, the central value of σ‖ is nearly twice that in the isotropic system,
and more than twice that in the tangentially biased system. Conversely, at

Radially biased

Tangentially biased

18

Binney and Tremaine, Galactic Dynamics: Second Edition (2008). 

44. Additional material: JEANS



JEANS ANALYSIS

1944. Additional material: JEANS



ANALYSIS

20

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).



ANALYSIS 

Soliton core only NFW is physically unconstrained González-Morales, Marsh, 
Peñarrubia, and Ureña-López, 
MNRAS 472, 1346 (2017) 

NFW parameters chosen 
independent of soliton parameters

Most general, but mass is not necessarily 
conserved  

Safarzadeh and Spergel, ApJ 
893, 21 (2020).

Parameterized transition with 
density continuity 

Transition radius is allowed to vary Marsh Pop, 2015, MNRAS, 451, 
2479

Density continuity, 
Mass conservation 
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a 
given particle mass
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Soliton core only NFW is physically unconstrained González-Morales, Marsh, 
Peñarrubia, and Ureña-López, 
MNRAS 472, 1346 (2017) 

NFW parameters chosen 
independent of soliton parameters

Most general, but mass is not necessarily 
conserved  

Safarzadeh and Spergel, ApJ 
893, 21 (2020).

Parameterized transition with 
density continuity 

Transition radius is allowed to vary Marsh Pop, 2015, MNRAS, 451, 
2479

Density continuity, 
Mass conservation 
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a 
given particle mass
Very light halos can’t form 

Robles, Bullock, and 
Boylan-Kolchin MNRAS 
483, 289 (2019), 1807.06018. 

A

B
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RESULTS

¡ Degeneracy between 
particle mass and halo mass

¡ Cuspier profiles will have 
more mass concentrated in 
the center  
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Cosmological simulations of light-dark matter (Schive
et al. 2014b) find that the density profile of the inner-
most central region of the halos at redshift z = 0 follows

⇢s(r) =
1.9 (10 m22)�2r�4

c

[1 + 9.1 ⇥ 10�2(r/rc)2]8
109M�kpc�3 , (1)

where m22 ⌘ m/10�22eV is the DM particle mass and
rc is the radius at which the density drops to one-half
its peak value for a halo at z = 0. This relationship is
accurate to 2% in the range 0 < r < 3rc.
The enclosed mass at a given radius r is:

M(< r) =
π r

0
4⇡⇢s(r 0)r 02dr 0 . (2)

Mc ⌘ M(< rc) gives approximately the central core mass.
This definition of core mass, makes up about 25% of the
total soliton mass, and M(< 3 rc) makes up about 95%
of the total soliton mass. Core mass or radius and the
total mass of the halo, Mh, hosting the galaxy are related
(Schive et al. 2014b):

Mc ⇡ 1
4 M1/3

h (4.4 ⇥ 107m�3/2
22 )2/3 , (3)

rc ⇡ 1.6m�1
22

⇣ Mh

109M�

⌘�1/3
kpc . (4)

Beyond the core radius, the halo profiles resemble
Navarro-Frenk-White (NFW, Navarro et al. 1997) pro-
files (Schive et al. 2014a). We model each halo to have a
central solitonic core profile which smoothly transitions
to an NFW profile (Mocz et al. 2018) around r = 3 rc.
We show the modeled profiles in Figure 1. Thin solid
lines show the solitonic core profiles for di↵erent axion
masses. The thin black line shows the NFW profile of
a 1010 M� halo at z = 0. The thick dashed lines show
the full halo profile that is a combination of the solitonic
profile transitioning to an NFW profile of mass 1010 M�
around r = 3rc.

3. COMPARISON TO OBSERVATIONAL DATA

For a pressure supported system, one can use the
Collisionless Boltzmann Equation (CBE) to related the
six-dimensional (6D) phase-space distribution function,
f (Ær, Æv), of a tracer particle, to the underlying gravita-
tional potential (Binney & Tremaine 2008). For nearby
dwarfs we only have access to two spatial dimensions
and one velocity dimension along the line of sight. dSph
kinematic studies therefore rely on Jeans equations by
integrating the CBE over velocity space:

1
⌫

d
dr

(⌫v̄2
r ) +

2
r
(v̄2

r � v̄2
✓ ) = �GM(r)

r2 , (5)

where ⌫(r) is the stellar density profile, and v̄2
r and v̄2

✓ are
components of the velocity dispersion in radial and tan-
gential directions, respectively. The velocity anisotropy
quantified by the ratio �ani(r) ⌘ 1 � v̄2

✓ (r)/v̄2
r (r) is un-

constrained by data. Di↵erent anisotropic profiles can
fit the projected velocity dispersion profile observed for

Figure 1. shows the modeled halo profiles of a 1010 M� halo

at z = 0 for di↵erent values of m22. Solid lines show the

solitonic cores choice of m22 (thin solid lines) and the thick

dashed lines show the full halo profile that is a combination

of the solitonic profile transitioning to an NFW profile of

mass 1010 M� at around r = 3rc .

the Fornax dSph, however, despite the presence of the
degeneracy between mass and anisotropy, the predicted
enclosed mass within about the dSph half-light radius is
the same among the di↵erent Jeans models (Walker &
Penarrubia 2011).
We take the enclosed mass within half-mass radius of

most of the UFDs and dSph systems from Wolf et al.
(2010), where the two are related to the observed line of
sight velocity dispersion by,

M1/2 ⇡
3 < �2

los > r1/2

G
. (6)

The brackets indicate a luminosity-weighted average and
r1/2 is the 3D deprojected half-light radius. The data
points for Draco II and Triangulum II are from Martin
et al. (2016a) and Martin et al. (2016b), respectively.
The measured slopes come from recent observations

that some dSphs have more than one stellar popula-
tion. Each population independently trace the underly-
ing gravitational potential. Battaglia et al. (2006, 2011)
report the detection of a two component stellar system
for both dSphs such that a relatively metal-rich subcom-
ponent is more centrally concentrated with small veloc-
ity dispersion and a separate metal-poorer, kinemati-
cally hotter, more extended subcomponent. Walker &
Penarrubia (2011) measure the half-light radii and ve-
locity dispersions of both subcomponents in Fornax and
Sculptor, and e↵ectively resolve two discrete points in a
mass profile dominated by dark matter. Walker & Pe-
narrubia (2011) report the measured slope of the mass

M. Safarzadeh and D. N. 
Spergel, 
ApJ 893, 21 (2020).



ANISOTROPY 

¡ Velocity anisotropy      is a 
measure of the difference 
between tangential and radial 
velocity dispersion 
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Figure 4.4 Line-of-sight velocity dispersion as a function of projected radius, from spa-
tially identical systems that have different dfs. In each system the density and potential
are those of the Hernquist model and the anisotropy parameter β of equation (4.61) is
independent of radius. The curves are labeled by the relevant value of β. In the isotropic
system, the velocity dispersion falls as one approaches the center (cf. Problem 4.14).

A contrasting case of almost equal simplicity is β = − 1
2 , corresponding to

σ2
θ = σ2

φ = 3
2σ

2
r . Then equation (4.66) becomes

1

2π2

ν

r
=

∫ Ψ

0
dE f1(E)(Ψ − E). (4.70)

Differentiating through twice with respect to Ψ we have

f1(Ψ) =
1

2π2

d2(ν/r)

dΨ2
(β = − 1

2 ). (4.71)

In the case of the Hernquist model, this yields

f1(E) =
1

4π3(GMa)2
d2

dẼ2

(
Ẽ5

(1 − Ẽ)2

)

, (4.72)

which one may easily show is non-negative for Ẽ ≤ 1.
Figure 4.4 shows the line-of-sight velocity dispersion σ‖ of a Hernquist

model as a function of projected radius when the df is (i) ergodic (eq. 4.50)
labeled “0”; (ii) radially biased (eqs. 4.62 and 4.69) labeled 1

2 , and (iii)
tangentially biased (eqs. 4.62 and 4.72) labeled − 1

2 . In the radially biased
system, the central value of σ‖ is nearly twice that in the isotropic system,
and more than twice that in the tangentially biased system. Conversely, at

Radially 
biased

Tangentially 
biased
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RESULTS

¡ Degeneracy between 
particle mass and halo mass 

¡ Probability of 6 objects that 
mass merging with a Milky 
Way sized halo is very small 
(P~10-6), would need to be 
an atypical galaxy
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RESULTS: CENTRAL BLACK HOLE 

¡ Add a black hole (point mass) 
to the dwarf galaxy center
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¡ Add a black hole (point mass) 
to the dwarf galaxy center

¡ Allows for lower particle mass, 
lower halo mass posteriors 
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RESULTS: CENTRAL BLACK HOLE 

¡ Add a black hole (point mass) 
to the dwarf galaxy center

¡ Allows for lower particle mass, 
lower halo mass posteriors

¡ Requires proportionally 
massive black holes  

[S. M. Koushiappas, J. S. Bullock, and A. 
Dekel, MNRAS 354, 292 (2004), astro-
ph/0311487.] 
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EVIDENCE

¡ Evidence is the sum of likelihood 
over the prior volume 

3451. Additional material: unbinned
52. Additional material: Multinest



EVIDENCE

¡ Evidence is the sum of likelihood 
over the prior volume 

¡ Note that Ursa Minor has the 
smallest number of stars, and is the 
most irregular of the dwarfs 
analyzed 

3551. Additional material: unbinned
52. Additional material: Multinest



WHAT’S THE TAKE AWAY? 

¡ Particle masses of m<10-20 eV are not kinematically viable in dwarfs unless:

¡ The Milky Way is an atypical halo.

¡ All dwarfs contain a central black hole of mass ~0.1% their halo mass.
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WHAT’S THE TAKE AWAY? 

¡ Particle masses of m<10-20 eV are not kinematically viable in dwarfs unless:

¡ The Milky Way is an atypical halo.

¡ All dwarfs contain a central black hole of mass ~0.1% their halo mass.

¡ Particle masses of m>10-20 eV are allowed, but more CDM-like.

¡ There is no strong preference for any of the models in most dwarfs
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1.   The Viability of Ultralight Bosonic Dark Matter in Dwarf Galaxies 
          Work done in collaboration with Savvas Koushiappas and Matthew Walker
          Phys. Rev. D 106, 063010 

2.   3D Jeans Analyses 



3D JEANS ANALYSIS
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3D JEANS ANALYSIS
Preliminary results with 
mock distance data

61. Additional material: Generalized nfw
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3D JEANS ANALYSIS

Uncertainties in radial and tangential velocities are highly dependent on uncertainty in 

distance measurements 


