This was a provisional title given to me by organizers of a McDonald Institute National Meeting a few months ago:

FUTURE WIMPS

Joseph Bramante

Arthur B. McDonald **Canadian Astroparticle Physics Research Institute**

Thankfully I had training for this at a recent MI/CITA astro & particle theory workshop (shared credit/culpability to other organizers: Juna Kollmeier, David Curtin, Katelin Schutz, Aaron Vincent)

Particle physics term

Non-abelian Ultrarelativistic Weakly interacting Fluffy Warm Scintillating

One example: "Non-abelian" + "asteroids" \rightarrow DM with a non-abelian confining gauge interaction could form 'dark-quark-ball dm' macroscopic objects, which may have sufficient EM interaction to be visible and be mistaken for asteroids

Play it loose, this is a game. Perhaps some of it will be fun & eye-opening & perhaps even possible?

The hat game

Astro term

Galactic magnetic fields Asteroids Saturn's hexagon Lyman alpha forest Active galactic nuclei

Joseph Bramante

Canadian Astroparticle Physics Research Institute

CETUP Talk June 17 2024

-Most DM models were written down in the 80s.

-The simplest DM are well studied, and may be discovered soon.

(Simple in formulation, complicated in dynamics)

-Heavy DM is less studied, and may be discovered soon. Heavy DM is perhaps easier to look for, for now.

What do we know about dark matter?

mass in GeV

How was dark matter made?

de Sitter fluctuation (wimpzilla)

classic freezeout (wimp)

freezeout variant (wimpish)

production temperature ($\rho^{1/4}$) in GeV

The WIMP Miracle

Observed DM relic abundance achieved for annihilation cross-section matching weak scale mass / couplings.

Some symmetry arguments imply interactions at dark matter experiments.

As the universe cools, dark matter falls out of thermal equilibrium, some portion annihilates to SM particles

Diluted WIMP Dark Matter: heavier

Overabundant freeze-out

$$\frac{dini}{dini} = n_x$$
 dilution

Motivation

- -Matter dominated epoch
- -Decay of asymmetry field (Affleck-Dine)
- -Decay of inflaton
- -Decay of modulus / gravitino
- -Field associated with ~PeV dark sector

see also e.g. Affleck Dine '85 Allahverdi Dutta Sinha '11 Kane Shao Watson '11 Davoudiasl Hooper McDermott '15 Berlin Hooper Krnjaic '16

HEAVY COMPOSITE DM

<u>Consider a simple model of fermionic DM coupled by a scalar field</u>

$$\mathcal{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2$$

Diluted dark matter has a freeze-out abundance that scales with ζ^{-1} This overabundance of dark matter leads to very large $\varphi - X$ composites

- $+ g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

see e.g. Wise Zhang '14 Krnjaic Sigurdson '14 Hardy Lasenby March-Russell '14 Detmold McCullough Pochinsky '14 Gresham Lou Zurek '17 Coskuner, Grabowska, Knapen, Zurek '18 Acevedo, JB, Goodman '20

Model of quark matter forming during 1st order PT

see e.g. Witten '84

FIG. 3. Isolated shrinking bubbles of the high-temperature phase.

m_x (GeV)

Heavy Mediator

 10^{-25}

 σ_{nx}

PRICE OF DM DETECTION

m_x (GeV)

HEAVY DARK MATTER

What kind of dark matter is over here

Nice to have a model

- Early matter domination
- Boson stars
 - On the other hand: What Lagrangian / cosmology

Predict masses from 1st principle

 $-\mathscr{L} = \frac{1}{2}(\partial\varphi)^2 + \bar{X}(i\gamma^{\mu}\partial_{\mu} - m_X)X + g_X\bar{X}\varphi X - \frac{1}{2}m_{\varphi}^2\varphi^2 + g_n\bar{n}\varphi n + \mathscr{L}_{SM},$

- Q ball - Dark QCD/BBN

mation still has open (e.g. pebble accretion). mposite DM doesn't have hamics like single-field

Nice to have a model

- Dissipative dark sector - Q ball - Fermion stars - Dark QCD/BBN
- Early matter domination - Boson stars

On the other hand: What is the Lagrangian / cosmology for planets?

 $-\mathscr{L} = \frac{1}{2}(\partial\varphi)^2 + \bar{X}(i\gamma^{\mu}\partial_{\mu} - m_X)X + g_X\bar{X}\varphi X - \frac{1}{2}m_{\varphi}^2\varphi^2 + g_n\bar{n}\varphi n + \mathscr{L}_{SM},$

- Planet formation still has open questions (e.g. pebble accretion).
- Heavy composite DM doesn't have simple dynamics like single-field DM models

Nice to have a model

- Early matter domination
- Boson stars

On the other hand: What is the Lagrangian / cosmology for planets?

 $-\mathscr{L} = \frac{1}{2}(\partial\varphi)^2 + \bar{X}(i\gamma^{\mu}\partial_{\mu} - m_X)X + g_X\bar{X}\varphi X - \frac{1}{2}m_{\varphi}^2\varphi^2 + g_n\bar{n}\varphi n + \mathscr{L}_{SM},$

- Dissipative dark sector - Fermion stars

- Q ball - Dark QCD/BBN

Perhaps the least explored of these.

- Planet formation still has open questions (e.g. pebble accretion).
- Heavy composite DM doesn't have simple dynamics like single-field DM models

$$(x)^{2} + \bar{X}(i\gamma^{\mu}\partial_{\mu} - m_{X})X + g_{X}\bar{X}\varphi X - \frac{1}{2}m_{\varphi}^{2}\varphi^{2} + g_{n}\bar{n}\varphi n + \mathcal{L}_{S}$$

$$\psi^0 + \text{c.c.} + \mathscr{L}_{SM+2HDM}$$

$$\begin{pmatrix} 2 & g' v_u / \sqrt{2} \\ \overline{2} & -g v_u / \sqrt{2} \\ & -\mu \\ & 0 \end{pmatrix}$$

(also restricted M1, M2 values to make Higgsino have tree-level *inelastic nuclear scattering)*

DM Models

if given multiple guesses, five decades of mass and model

1. 2. 3.

Alien Game Show Win spaceships!

DM Models

if given multiple guesses

- 1. Heavy asymmetric, 10⁵-10¹⁰ GeV
- 2. Higgsinos/WIMPs, 10²-10⁷ GeV
- 3. Axions, 10⁻¹⁰-10⁻⁵ eV
- 4. Heavy composite, 10¹⁹-10²⁴ GeV
- 5. Light dark matter, 10⁻⁵-1 GeV
- 6. ...your favorite DM

Alien Game Show Win spaceships!

my rough prior

≲6%

≲4%

≲4%

DM Models

- 1. Heavy asymmetric, 10⁵-10¹⁰ GeV
- 2. Higgsinos/WIMPs, 10²-10⁷ GeV
- 3. Axions, 10⁻¹⁰-10⁻⁵ eV
- 4. Heavy composite, 10¹⁹-10²⁴ GeV
- 5. Light dark matter, 10⁻⁵-1 GeV
- 6. ...your favorite DM

But if told, "hey for heavy composites, you can have 10 orders of magnitude in mass"

- 1. Heavy composite 10¹⁹-10²⁹ GeV
- 2 Heavy asymmetric 105-1010 GeV

HIGH MASS ASYMMETRIC COMPOSITE DM

Consider a simple model of fermionic DM coupled by a scalar field

$$\mathcal{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2$$

Diluted dark matter has a freeze-out abundance that scales with ζ

This overabundance of dark matter leads to very large $\varphi - X$ corr

Composite mass ranging from milligrams to thousands of tons

- $+ g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

see also e.g. Mise 7hang '14

Sigurdson '14 _asenby March-Russell '14 d McCullough Pochinsky '14 Im Lou Zurek '17 ner, Grabowska, Knapen, Zurek '18

Javier Acevedo, JB, Goodman 2012.10998

$$27 \left(\frac{g_{ca}^*}{10^2}\right)^{3/5} \left(\frac{T_{ca}}{10^5 \,\text{GeV}}\right)^{9/5} \left(\frac{5 \,\text{GeV}}{m_X^*}\right)^{21/5} \left(\frac{10^{-6}}{\zeta}\right)^{6/5}$$

HIGH MASS ASYMMETRIC COMPOSITE DM

Consider a simple model of fermionic DM coupled by a scalar field

$$\mathcal{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2$$

Diluted dark matter has a freeze-out abundance that scales with ζ^{-1}

This overabundance of dark matter leads to very large $\varphi - X$ composites

Composite mass ranging from milligrams to thousands of tons

- $+ g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

see also e.g. Wise Zhang '14 Krnjaic Sigurdson '14 Hardy Lasenby March-Russell '14 Detmold McCullough Pochinsky '14 Gresham Lou Zurek '17 Coskuner, Grabowska, Knapen, Zurek '18

Javier Acevedo, JB, Goodman 2012.10998

$$27 \left(\frac{g_{ca}^*}{10^2}\right)^{3/5} \left(\frac{T_{ca}}{10^5 \,\text{GeV}}\right)^{9/5} \left(\frac{5 \,\text{GeV}}{m_X^*}\right)^{21/5} \left(\frac{10^{-6}}{\zeta}\right)^{6/5}$$

COMPOSITE INTERACTIONS

nuclear interactions with DM composite internal potential

Acevedo, JB, Goodman 2012.10998

Acevedo, JB, Goodman 2108.10899

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

scattering with constituents

$$\langle \varphi \rangle > m_N$$

Acevedo, Boukhtouchen, JB, Cappiello, Mohlabeng, Sheahan, Tyagi, in progress

BREM/NUCLEAR INTERACTIONS

nuclear interactions with DM composite internal potential

 $\langle \varphi \rangle \lesssim m_N, g_n > 0$

Acevedo, JB, Goodman 2012.10998

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

Saturated ADM composite parameters

bremsstrahlung + fusion requires a few nuclei per composite

for large N_c composite interior has a potential determined by: Minimize $\varepsilon = \frac{1}{2}m_{\phi}^{2}\langle\phi\rangle^{2} + \frac{1}{\pi}\int_{0}^{p_{F}} dp \ p^{2} \left(p^{2} + m_{*}^{2}\right)^{1/2}$ leading to $\langle \phi \rangle \simeq \frac{m_X}{q_Y}, \quad r < R_X$ with interior mass $\bar{m}_X \simeq [3\pi m_X^2 m_{\varphi}^2/(2\alpha_X)]^{1/4}$ (DM fusion conditions) edge of composite screened $\alpha_X^2 m_X \gtrsim m_\phi$ $\phi(r) = \langle \phi \rangle \ e^{-m_{\phi}(r-R_X)} \left(\frac{R_X}{r}\right), \quad r \ge R_X$ $lpha_X \gtrsim 0.3 \left(\frac{m_X}{10^7 \,{
m GeV}}\right)^{\frac{2}{5}} \left(\frac{\zeta}{10^{-6}}\right)^{\frac{1}{5}}$

DM-nucleon coupling accelerates nuclei in composites

Consider an interaction term with SM r

nucleons
$$\mathscr{L} = \mathscr{L}_0 + g_n \bar{n} \phi n$$

Nuclei will accelerate across the DM composite's boundary layer, because of the attractive potential sourced by X fermions, like gravity but stronger and shielded

$$p_1^2 + m_N^2 = p_2^2 + (m_N - Ag_n \langle \phi \rangle)^2$$
$$Ag_n \langle \phi \rangle = \frac{Ag_n m_X}{g_X} = \frac{p_2^2 - p_1^2}{2m_N}$$

Heated nuclei in composite interior

 $\langle \phi \rangle \propto m_X \sim \text{TeV} - \text{EeV}$ acceleration is substantial even for $g_n \ll 1$

Ionization (Migdal, collisions) Thermal bremsstrahlung Thermonuclear fusion

Potential signatures of this effect?

- Ionizing dark matter
- Neutrino detectors
- Type la supernovae

BREM/NUCLEAR FUSION IN COMPOSIT

$$f^{2} = \frac{1}{2} (\partial \varphi)^{2} + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_{X}) X + g_{X} \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^{2} \varphi^{2} + g_{n} \bar{n} \varphi n + \mathcal{D}$$
TES

Where in parameter space do experiments have sensitivity?

To trigger detectors: SNO+: ~1 MeV per 100 ns IceCube: ~10 TeV per 100 ns

Composites radiate continuously along path:

$$\dot{E}_{SNO+} \simeq 10^4 \text{ GeV s}^{-1}$$
 $\dot{E}_{IC} \simeq M_X^{max} \simeq 10^{22} \text{ GeV}$ M_X^{max}

(~100 PeV in single crossing)

ig path: $\simeq 10^{11} \text{ GeV s}^{-1}$ $\simeq 3 \times 10^{25} \text{ GeV}$

1 K M

Ε

C
-

BREM/NUCLEAR FUSION IN COMPOSIT

$$f^{2} = \frac{1}{2} (\partial \varphi)^{2} + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_{X}) X + g_{X} \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^{2} \varphi^{2} + g_{n} \bar{n} \varphi n + \mathcal{D}$$
TES

Acevedo, JB, Goodman 2012.10998

LOW E RECOIL INTERACTIONS

nuclear interactions with DM composite internal potential

Acevedo, JB, Goodman 2108.10899

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

Composite Migdal Effect at DD Experiments

$$\Delta t_{\text{interact}} \ll \tau_{e^-}$$
, R_a/v_N Migdal approximation of the sudden nuclear sudden nuclear sudden nuclear sudden nuclear subset of the subset of th

$$\begin{bmatrix} \tau_{e^-} \sim 10^{-17} \text{ s} & \text{electron orbital period} \\ \frac{R_a}{v_N} \sim 10^{-15} \text{ s} \left(\frac{g_n}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{m_X}{\text{TeV}}\right)^{-\frac{1}{2}} \end{bmatrix}$$

 $(R_a \sim 10^{-8} \text{ cm})$

Composite masses/radii determined by m_x, cosmology with $\alpha_X = 0.3$

$$(\phi)^2 + \bar{X}(i\gamma^\mu\partial_\mu - m_X)X + g_X\bar{X}\varphi X - \frac{1}{2}m_\varphi^2\varphi^2 + g_n\bar{n}\varphi n + \mathscr{L}_{SM},$$

Acevedo, JB, Goodman, 2108.10889

MIMP INTERACTIONS

nuclear interactions with DM composite internal potential

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 \pm g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

 $\langle \varphi \rangle > m_N$

(MIMPs)

Acevedo, JB, Goodman 2108.10899

Multiscatter: models of dark matter interact many times in detectors.

+ +

+

New searches for multiply interacting dark matter (MIMPs)

 $E_{th} \sim \mu_{nx}^2 v^2 / m_n$

cross-section for DM to hit detector particle

mass of dark matter

• If particles have velocity v (~0.001c), then sensitivity of detector sets a minimum energy threshold for detection

cross-section for DM to hit detector particle

mass of dark matter

• Detector is composed of N_a atoms, observes for time t

• As DM mass increases, DM flux decreases, sensitivity decreases as 1/m_x

DM number density ρ_x / m_x

mass of dark matter

Overburden attenuation

 DM particles can be slowed through scattering with atmosphere, earth, aluminum space station wall.

Length of overburden $E_{thresh} \lesssim E_i (1 - m_a/m_x)^{n_a \sigma_{ax} L_{ob}}$

cross-section for DM to hit detector particle

mass of dark matter

 Attenuation cross-section increases linearly with DM kinetic energy ~m_x v_x²

mass of dark matter

Special point — has all passing particles hit once in detector

MULTISCATTER DARK MATTER DETECTION

mass of dark matter

- $\tau = n_a \sigma_{ax} L = 1$

JB, Broerman, Kumar, Lang, Pospelov, Raj 1812.09325

JB, Broerman, Lang, Raj 1803.08044 1910.05380 46

CHICAGO, MULTISCATTER DARK MATTER DETECTION

- - Liquid scintillator test modules at U Chicago Chris Cappiello, Collar, Beacom 2008.10646

GAS CLOUDS

The earth and atmosphere block detection of strongly-interacting dark matter

2010.07240 1812.10919 1806.06857 dark matter kinetic energy < recoil threshold

GAS CLOUD BOUNDS

Conservative: assume all heating by DM

In reality:

radiative cooling

cosmic rays

(DM +)

Xray/UV background

photoelectric heating via dust grains

There are known ubiquitous heating sources, like cosmic UV background, cosmic rays, dust grain heating.

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Gas Cloud 357.8-4.7-55

Δv from 21cm emission gives T<137 K <u>G357.8-4.7-55</u>

M = 237 M⊙

 $r_{gc} = 12.9 \text{ pc}$

 $n_n = 0.4 \text{ cm}^{-3}$

Tg < 137 K

 $r_{los} \sim 800 \text{ pc}$

 $v_{g} = -54 \text{ km/s}$

0

(assume spherical cloud)

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Fixed cross-section for scattering off all nuclei

Amit Bhoonah, JB, Schon, Song 2010.07240

Gas Cloud 357.8-4.7-55

Δv from 21cm emission gives T<137 K G357.8-4.7-55

M = 237 M⊙

 $r_{gc} = 12.9 \text{ pc}$

 $n_n = 0.4 \text{ cm}^{-3}$

Tg < 137 K

 $r_{\rm los} \sim 800 \ {\rm pc}$

 $v_{g} = -54 \text{ km/s}$

6

(assume spherical cloud)

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Fixed cross-section for scattering off all nuclei

Amit Bhoonah, JB, Schon, Song 2010.07240

Recast CDMS-I limit using multi scatter (Muon veto rejects very strong interactions)

ETCHING PLASTIC SEARCHES FOR DARK MATTER

> Two searches in 1978 and 1990 for cosmic rays and monopoles using acid-etched plastic track detectors > Still have best sensitivity for some high mass dark matter, for different reasons

see also e.g. Starkman, Gould, Esmailzadeh, Dimopoulos 1990

Skylab

	Skylab	Ohya
Area A	$1.17 m^2$	$2442 m^2$
Duration t	0.70 yr	2.1 yr
Zenith cutoff angle	$\theta_D = 60^{\circ}$	$\theta_D = 18.4^\circ$
Detector material	$0.25 \text{ mm thick Lexan} \times 32 \text{ sheets}$	$1.59 \text{ mm thick CR-}39 \times 4 \text{ sheets}$
Detector density	$1.2~{ m g~cm^{-3}}$ Lexan	$1.3 { m ~g} { m ~cm}^{-3} { m ~CR}$ -39
Detector length at θ_D	$1.6~\mathrm{cm}$	$0.66~\mathrm{cm}$
Overburden density	$2.7~{ m g~cm^{-3}}$ Aluminum	$2.7~{ m g~cm^{-3}~Rock}$
Over burden length at θ_D	$0.74~\mathrm{cm}$	39 m

Bhoonah, JB, Courtman, Song 2012.13406

Ohya Quarry

LOOSELY BOUND COMPOSITES

Javier Acevedo, Yilda Boukhtouchen, JB, Chris Cappiello, Gopolang Mohlabeng, Narayani Tyagi

LOOSELY BOUND COMPOSITES

- DM-nuclear scattering cross sections that scales with ~A⁴ for larger than nuclear cross sections

ETCHING PLASTIC SEARCHES FOR DARK MATTER

> Use realistic dark matter density and velocity distribution, solve for overburden+etching sensitivity

$$\frac{dE}{dx}\Big|_{th} = \frac{2E_i}{m_{\chi}} \left(\sum_{A \subset O} \frac{\mu_{\chi A}^2}{m_A} n_A \sigma_{\chi A} \right) \exp\left[\frac{-2}{m_{\chi}} \left(x_O \sum_{A \subset O} n_A \frac{\mu_{\chi A}^2}{m_A} \sigma_{\chi A} + x_D \sum_{A \subset D} n_A \frac{\mu_{\chi A}^2}{m_A} \sigma_{\chi A} \right) \right]$$

ANCIENT SEARCH FOR NEW PARTICLES: MICA

FIG. 2. Geometry of collinear etch pits along the trajectory of a hypothetical monopole-nucleus bound state in three sheets of mica that had been cleaved, etched, and superimposed for scanning.

> 1986 Price and Salamon mica monopole search > 1995 Snowden-Ifft et al. calibrated mica samples

ANCIENT SEARCH FOR NEW PARTICLES: MICA

 Calibrated and etched mica samples from Price and Salamon 1986, Snowden-Ifft 1995

Also a mineral DM detection collaboration at Queen's Balogh, Boukhtouchen, JB, Fung, Leybourne, Lucas, Mkhonto, Vincent See e.g. recent whitepaper: 2301.07118

Reanalyzed mica data using overburden model / custom MC Acevedo, JB, Goodman 2105.06473

HEAVY MIMP RESULTS FROM DEAP-3600, XENON1T

2108.09405, PRL

2304.10931, PRL

FUTURE HEAVY DM: CR-39, SNO+, QCUMBER, YOUR EXPERIMENT?

Q Paleo (QCumber? - name suggestions welcome) 2301.07118

Future CR-39 experiment or similar

-Most DM models were written down in the 80s. -The simplest DM are well studied, and may be (Simple in formulation, complicated in dynamics)

-Less simple heavy DM is less studied, and may easier to look for, for now.

Delorean

-Most DM models were written down in the 80s.

-The simplest DM are well studied, and may be discovered soon.

(Simple in formulation, complicated in dynamics)

-Less simple heavy DM is less studied, and may be discovered soon. Heavy DM is easier to look for, for now.

URE DM

-Most DM models were written down in the 80s.

-The simplest DM are well studied, and may be discovered soon.

(Simple in formulation, complicated in dynamics)

-Less simple heavy DM is less studied, and may be discovered soon. Heavy DM is easier to look for, for now.

