

## A SURF Low Background Module

Chris Jackson 14<sup>th</sup> May 2024



PNNL is operated by Battelle for the U.S. Department of Energy





## Dune has great low background potential...





5/14/24

2

# within a single DUNE module





# SURF Low Background Module Concept

- Build a low background, low threshold detector in a DUNE cryostat
  - Enhance sensitivity to low energy physics
  - Do not perturb the neutrino oscillation goals
- Requirements:
  - External shielding
  - Internal background control
  - Enhanced light sensitivity
- Use solutions demonstrated already in low background experiments
  - Main R&D developments required is 'DUNE-scale' application
- Will focus on radioactive background control in this talk
  - Applicable to many DUNE Phase 2 concepts





## **SURF Low Background Module Concept**





## **Low Background Physics**









## **Low Background Physics**













## **Low Background Physics**





















## **Neutron Shields**







### Neutron shielding

- No water shield in current DUNE design
- 40 cm of water shielding around detector (proposed by Capozzi, Li, Zhu and Beacom)
  - $\checkmark$  ~3 order of magnitude reduction

### Cryostat design will be important for lower backgrounds

- Internal shielding options
  - - ✓ High density R-PUF foam
    - ✓ Boron, Lithium or Gadolinium doped layers
    - $\checkmark$  ~1 order magnitude reduction
  - Planes of (doped) acrylic possible as shielding within the LAr
    - ✓ DarkSide-20k solution



## Alternate cryostat designs to increase shielding:



## Internal Detector Background Control

- Must lower unshielded internal neutron sources by same amount as shielded external sources to remain subdominant
- LZ has achieved 10<sup>5</sup> reductions beyond DUNE expected
- Requires careful QA/QC program
  - Less stringent than dark matter experiments...
  - ...but at unprecedented scale (e.g. 1 kton stainless steel in cryostat!)





## **Radon Backgrounds**



- Radon is highly mobile and can emanate and move within argon
- Main sources:
  - Purification system
  - Cryostat
  - Detector Components
  - •





### DUNE phase 1 targets mBq/kg

## Low emanation from purification system measured

- But many unmeasured
- components remain

### Target: 10<sup>-3</sup> radon reduction

Dark matter experiments have achieved 0.2 µBq/kg



# **Radon Reduction**

## Radon removal:

- Argon purification via inline radon trap
  - ✓ MicroBoone filtration system (arXiv:2203.10147 [physics.ins-det])
    - Report copper filter reduction in radon (97 99.999%)
      - What is the mechanism?
      - Does it breakdown? Or require cycling?
      - Do we require additional radon purification? (e.g. Radon removal in liquid phase using charcoal Borexino)

## Radon control:

- Emanation measurement materials campaign
  - ✓ Large QA/QC program, new cryogenic systems, high throughput developments
- Surface treatments
  - ✓ Cleaning, passivation, electropolish, electroplate,...
- Dust control
  - ✓ Need reliable, repeatable large-scale cleaning techniques
- Radon reduction system during installation and operation
- Analysis methods (PSD)
  - $\checkmark$  Timing is key (doping, reflections)

Multiple radon reduction paths to be explored<sup>Chris Jackson</sup>







## What is Low-Radioactivity Underground Argon

## • Atmospheric argon:

- <sup>39</sup>Ar: 1 Bq/kg (10 MHz/module) 0.57 MeV endpoint
- <sup>42</sup>Ar: 0.1 mBq/kg 0.6 MeV endpoint but...
- Decays to <sup>42</sup>K with 3.5 MeV endpoint

- Underground sources of depleted argon exist
  - Demonstrated in DarkSide-50
    - ✓ 1400x reduction <sup>39</sup>Ar (air contamination = could be lower)
    - $\checkmark$  Larger reduction of <sup>42</sup>Ar likely
  - From CO<sub>2</sub> wells in Cortez, CO
  - Planned for DarkSide-20k and GADMC
  - Urania plant production target: 300 kg/day
  - Only vetted source but not large enough for a DUNE-like module



### DarkSide 50: Phys. Rev. D 93, 081101(R)

<sup>39</sup>Ar rate: x1400 reduction



## **Next Generation Production**

- Will require large-scale, cost-effective production
- This require:
  - High concentration/chemically enriched underground source
  - Should be parasitic to major underground gas operation
  - Ideally commercial supplier produces argon
    - ✓ Could reuse existing Urania infrastructure

White paper: A Facility for Low-Radioactivity Underground Argon arXiv:2203.09734 [physics.ins-det]

- PNNL working to explore large scale underground argon sources
  - Preliminary gas analysis indicates mantle origin.
  - **Supplier:** 3 major U.S. gas producers/suppliers (not disclosed at company request)
  - Production rate: ~5,000 tonnes/year

Ballpark cost: Could be as low as x3 regular argon for 10 kton+ scales NOTE: These are very rough estimates.



# <sup>42</sup>Argon Production Underground

### **Atmospheric Argon:**

- <sup>39</sup>Ar: 1 Bq/kg (10 MHz/ DUNE module)
- <sup>42</sup>Ar: 0.1 mBq/kg

### **Radiogenic Production Underground:**

- <sup>39</sup>K(n,p)<sup>39</sup>Ar primary <sup>39</sup>Ar production underground
  - At least 1500x lower than AAr
- No clear radiometric path for <sup>42</sup>Ar

### **Cosmogenic Production Underground:**

- Production calculation: 3 x 10<sup>-3</sup> <sup>42</sup>Ar per ton of crust per year at 3 km w.e.
  - 7 orders of magnitude less than <sup>39</sup>Ar at this depth
- But many uncertainties:
  - Crust or mantle origin
  - How much argon diffuses into gas field
- Likely >10<sup>10</sup> suppression in rate compared to atmosphere Chris Jackson

<sup>42</sup>Ca stable 0.647%

> 41**K** stable 6.7%

40**Ar** stable 99.603%

> <sup>39</sup>CI 55.6 m

38S 2.84 hr



| <b><sup>43</sup>Ca</b><br>stable<br>0.135% | 44 <b>Ca</b><br>stable<br>2.086%      | <b><sup>45</sup>Ca</b><br>162.7 d | <b><sup>46</sup>Ca</b><br>stable<br>0.004% |
|--------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------------|
| <b>42K</b>                                 | <b>43K</b>                            | <b>44K</b>                        | <b>45K</b>                                 |
| 12.36 hr                                   | 22.3 hr                               | 22.1 m                            | 17.8 m                                     |
| <b>41Ar</b><br>1.83 hr                     | <sup>42</sup> Ar<br>33 yr<br><b>?</b> | <b><sup>43</sup>Ar</b><br>5.4 m   | <b>44<b>Ar</b><br/>11.87 m</b>             |
| <b>40CI</b>                                | 41 <b>CI</b>                          | <b>42CI</b>                       | <b>43CI</b>                                |
| 1.38 m                                     | 34 s                                  | 6.8 s                             | 3.1 s                                      |
| <b>39S</b>                                 | <b>40S</b>                            | <b>41S</b>                        | <b>42S</b>                                 |
| 11.5 s                                     | 9 s                                   | 2 s                               | 1 s                                        |

### Sharma Poudel, LRT 2022, paper in preparation

# Low Background Module Concept SLoMo (SURF Low Background Module)

## Solar Neutrinos <sup>12</sup>

• Precision  $\Delta m_{21}^2$ 

Northwest

Pacific

- NSI constraints
- Precision CNO, test solar metallicity





### Onubb 140 2nubb Tl208 50 mBa/ka 8 120 · 8BES Ar42 Bg/L/1500/5E8/10 5 100 pseudo-data 80 -60 · 0.1 40 20 2.30 2.35 2.40 2.45 2.50 2.55 2.60 Energy [MeV]

## Snowmass White Paper:

Low Background kTon-Scale Liquid Argon Time Projection Chambers

A. Avasthi<sup>1</sup>, T. Bezerra<sup>2</sup>, A. Borkum<sup>2</sup>, E. Church<sup>3</sup>, J. Genovesi<sup>4</sup>, J. Haiston<sup>4</sup>, C. M. Jackson<sup>3</sup>, I. Lazanu<sup>5</sup>, B. Monreal<sup>1</sup>, S. Munson<sup>3</sup>, C. Ortiz<sup>6</sup>, M. Parvu<sup>5</sup>, S. J. M. Peeters<sup>2</sup>, D. Pershey<sup>6</sup>, S. S. Poudel<sup>3</sup>, J. Reichenbacher<sup>4</sup>, R. Saldanha<sup>3</sup>, K. Scholberg<sup>6</sup>, G. Sinev<sup>4</sup>, J. Zennamo<sup>7</sup>, H. O. Back<sup>3</sup>, J. F. Beacom<sup>8</sup>, F. Capozzi<sup>9</sup>, C. Cuesta<sup>10</sup>, Z. Djurcic<sup>11</sup>, A. C. Ezeribe<sup>12</sup>, I. Gil-Botella<sup>10</sup>, S. W. Li<sup>7</sup>, M. Mooney<sup>13</sup>, M. Sorel<sup>9</sup>, and S. Westerdale<sup>14</sup>

Now published: J. Phys. G Nucl. Part. Phys 50 (2023) 060502



## **Neutrinoless Double Beta Decay**

- Confirm ton-scale signal
- Sensitivity beyond inverted hierarchy
- Requires separate campaign with %-level xenon loading

## WIMP Dark Matter

- timescale

Chris Jackson

## **Supernova Neutrinos**

 Lower threshold, elastic scatters · Early- and late-time information Detection beyond Magellanic • CEvNS glow

Competitive high mass search on fast

### Confirm G2 signal with annual modulation



## Conclusions

- Growing interest in lower background and threshold DUNE options:
  - SLoMo, APEX, SoLAr, LEPLAr, THEIA, …
- Lower backgrounds possible through multiple, increasingly aggressive, approaches:
  - Materials selection QA/QC
  - Radon reduction
  - Additional shielding
  - Underground argon (\*Requires a new source well)
- Expanded physics programs at DUNE possible through these progressively aggressive approaches:
  - Supernova neutrinos
  - Solar neutrinos
  - Potentially neutrinoless double beta decay and WIMP dark matter



## Thank You







## **Backup Slides**







## SURF Low Background Module (SLoMo)

- Development of vertical drift design
- Background Reduction Targets:
  - 10<sup>3</sup> reduction external neutrons
    - $\checkmark$  40 cm water shield outside detector
  - 10<sup>3</sup> reduction internal backgrounds
    - ✓ Largescale materials and assay campaign
    - ✓ Internal shielding in cryostat
  - 10<sup>3</sup> reduction radon
    - ✓ Inline purification system
    - ✓ Emanation control
  - >10<sup>3</sup> reduction <sup>39</sup>Ar, >10<sup>8</sup> reduction <sup>42</sup>Ar
    - ✓ Low radioactivity underground argon
- Light Collection Targets:
  - Energy resolution of 2% at 1 MeV (>10% of photons must be collected)
  - Pulse shape discrimination for dark matter search (400 nuclear recoil induced photons at SiPMs surface)
    - ✓ SiPM tiles on acrylic box and cathode plane; reflective coatings on inner walls and anode planes; Argon purity enhanced





Low background underground argon



## **Solar Neutrinos**



Precision  $\Delta m_{21}^2$  measurements:

- Test solar/reactor tensions
- NSI constraints



Possible CNO neutrino measurement

• Solar high/low metallicity solution targeted

# easurement ity solution



## **WIMP Dark Matter**

- Dark matter search requirements:
  - 50-100 keV nuclear recoil threshold •
  - O(10) background events •
  - O(100) photons detected per events





- Sensitive WIMP search in argon on competitive timescale
- Could confirm a signal from G2 experiments using annual modulation



Chris Jackson

5/14/24

24



## **Optical System**

- Enhanced Photon Detection System to lower energy threshold with respect to baseline DUNE design
- **Target:** Energy resolution of 2% at 1 MeV (~10% of photons must be collected)
- Target: 400 nuclear recoil induced photons at SiPM surface (=100 photons after SiPM efficiency corrections) to allow pulse shape discrimination for dark matter search







5/14/24

4500 4000

3500 3000 2500

2000

1500 1000



## **Optical System**

- Enhanced Photon Detection System:
  - SiPM tiles on acrylic box and cathode plane
    - ✓ DarkSide-style tiles
    - ✓ 50% Quantum efficiency (+ plus wavelength shifter efficiencies)
    - ✓ Can operate in high electric field
    - ✓ High volume production capability is being constructed for DarkSide-20k
    - ✓ Require 50,000+ tiles
  - Significant potential overlap with DUNE MoO ideas that enhance light collection:
    - ✓ Light sensitive charge readout, metalenses, dopants,...





### DarkSide SiPM



## **Optical System**

- Enhanced Photon Detection System:
  - Reflective coatings on inner walls and anode planes
    - ✓ TPB vs PEN as wavelength shifter
    - ✓ Assume geometric efficiency 50%







| Attenuation<br>Length | Minimum<br>SiPM<br>Coverage |
|-----------------------|-----------------------------|
| 100 m                 | 6%                          |
| 50 m                  | 7%                          |
| 20 m                  | 9%                          |
| 10 m                  | 11%                         |

900

800

700

600

500 400

300

200 Mean

100

on Y-axis

SiPM Hits

Jones, B. J. P., et al. "A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level." Journal of Instrumentation 8.07 (2013): P07011.

Chris Jackson



### Acrylic Reflectivity (Original Size Acrylic Box)

12

0.01



