

Nucleon decay searches in JUNO Cailian Jiang Nanjing University, Institute of High Energy Physics

On behalf of JUNO Collaboration

CoSSURF 2024 May 15, 2024

CONFERENCE ON SCIENCE AT THE SANFORD UNDERGROUND RESEARCH FACILITY

South Dakota Mines campus, May 14-16, 2024

>Introduction

>JUNO experiment

➢Nucleon decay

- $p \rightarrow \overline{v} + K^+$
- Invisible neutron decay

➤Summary

Introduction

GUTs unify the strong, weak and electromagnetic interactions

- Predict the instability of nucleon
 - Search the nucleon decay to test the GUTs

>Matter-antimatter is asymmetric in universe

- Sakharov conditions(to explain the asymmetry)
 - Baryon number violation $\Delta B \neq 0$
 - C and CP violation
 - departure from thermal equilibrium

 \overline{v}_{τ}

и

Ŵ

И

\succ GUTs predict instability of nucleon

- Protons can decay into lighter subatomic particles(hypothesis)
- Examples
 - $p \rightarrow e^+ + \pi^0$ (Non-SUSY GUTs)
 - ▶ $p \rightarrow \overline{v} + K^+$ (SUSY GUTs)

- Examples •
 - $n \rightarrow$ neutrino, $n \rightarrow$ dark fermions ...
 - Phys. Rev. D 67, 075015 (2003).
 - Phys. Lett. B 662, 259 (2008).
 - Phys. Rev. D 98, 035049 (2018).

Current searches for proton decay

IMB

JUNO

- 3.3 kton water-Cherenkov detector, 2000 PMTs
- $\tau/B(p \to e^+ \pi^0) > 5.5 \times 10^{32} years$ (1990)
- No proton decay have been found

KamiokaNDE

- 0.88 kton water-Cherenkov detector, 948 PMTs
- $\tau/B(p \to e^+ \pi^0) > 2.6 \times 10^{32} years$ (1989)
- No proton decay have been found

Super-Kamiokande (Super-K)

- 22.5 kton water-Cherenkov detector, 11146 PMTs
- $\tau/B(p \to e^+ \pi^0) > 2.4 \times 10^{34} years$ (2020)
- $\tau/B(p \to \bar{v} K^+) > 5.9 \times 10^{33} years$ (2014)
- No proton decay have been found

KamLAND

- 0.9 kton liquid scintillator detector
- $\tau/B(p \to \bar{v} K^+) > 5.4 \times 10^{32} years$ (2015)
- No proton decay have been found

Past searches

SOUDAN-1 Fiducial mass	
Total mass	
KGF 1980	≜
NUSEX 1982	er
KGF-2 1985	acki met
FREJUS	n tr alori
SOUDAN-2] 1993	C
HPW [1983	kov
KAMIOKANDE 1983	Vate
IMB 1982	r v v
SUPERKAMIOKANDE	<u>;</u>](1996)
1 10 100 1000 10 000	100 000
Detector mass (metric tons)	
10^{30} 10^{31} 10^{32} 10^{33} 10	34
τ/B (vr) limit for 5-vr observation period ($\epsilon = 0.5$; μ	n : n = 1:1

KamLAND

- 0.9 kton liquid scintillator detector
- $\tau/B(n \to inv) > 5.8 \times 10^{29} years$ (2006)
- $\tau/B(nn \to inv) > 1.4 \times 10^{30} years$ (2006)
- No invisible neutron decay have been found

SNO+

- 0.9 kton liquid scintillator detcor
- $\tau/B(n \to inv) > 9.0 \times 10^{29} years$ (2022)
- $\tau/B(nn \rightarrow inv) > 1.5 \times 10^{28} years$ (2022)
- No invisible neutron decay have been found

Future Nucleon Decay Experiments

Hyper-K

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE

	Hyper-K	DUNE	JUNO
Mass (kton)	258 (186)	4*17 (4*10)	20
Target Nucleus	H2O	Ar40	12% H, 88% C12
Technology	Water Cherenkov	LAr TPC	Liquid Scintillator
Advantages	Large mass and cheap Good particle Identification Good direction resolution	Excellent track reconstruction Excellent particle Identification Good energy resolution	Excellent energy resolution 3% Excellent <i>E</i> threshold 0.7MeV
Shortcomings	Cerenkov threshold	Complex FSI for Ar40	Direction information lost

JUNO experiment

JUNO experiment overview

2024/5/14

Jiangmen Underground Neutrino Observatory (JUNO), a multipurpose neutrino experiment

Nucleon decay: $p \rightarrow \overline{v} + K^+$

• Form triple coincident signals

			Two most	$m \rightarrow K^{+} + \overline{m}$
Decay	Branching	Kinetic energy	dominant	$p \rightarrow \kappa^{+} + \nu$
mode	ratio (%)	sum (MeV)		Prompt pulse
$K^+ \rightarrow \mu^+ \nu_\mu$	63.55 ± 0.11	152	channels	$K^+ \rightarrow \nu_\mu + \mu^+$
$K^+ \rightarrow \pi^+ \pi^0$	20.66 ± 0.08	354		$\tau = 12.4$ ns
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	5.59 ± 0.04	75		Delayed pulse $\mu^+ \rightarrow e^+ + \nu_e + \nu_\mu$
$K^+ \rightarrow \pi^0 e^+ \nu_e$	5.07 ± 0.04	265-493		$K^+ \rightarrow \pi^+ + \pi^0$
$K^+ o \pi^0 \mu^+ u_\mu$	3.353 ± 0.034	200-388		$= 0^{8.4 \times 10^{-8} \text{ns}}$
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.761 ± 0.022	354		$\tau = 26 \text{ns} \qquad \pi^+ \to \nu_{} + \mu^+$
			AN and PI	D candidates Evis Distribution
220 200 180 160 140 120 0 100 80 60 40 20 0	κ+	e+	0.12 0.1 0.08 0.06 0.04 0.02 0	AN E _{vis} Distribution PD E _{vis} Distribution PD E _{vis} Distribution PD E _{vis} Distribution PD: Proton decay
1	10 10 ² hit time (ns)	10 ³ 10 ⁴	100 200	E _{vis} /MeV

Most dominant background: Atmospheric neutrinos

Туре	Ratio (%)	Ratio with E_{vis} in [100 MeV, 600 MeV](%)	Interaction	Signal characteristics
NCES	20.2	15.8	$\begin{array}{l} \nu + n \rightarrow \nu + n \\ \nu + p \rightarrow \nu + p \end{array}$	Single Pulse
CCQE	45.2	64.2	$ \begin{split} \bar{\nu}_l + p &\rightarrow n + l^+ \\ \nu_l + n &\rightarrow p + l^- \end{split} $	Single Pulse
Pion Production	33.5	19.8	$ \begin{array}{l} \nu_l + p \rightarrow l^- + p + \pi^+ \\ \nu + p \rightarrow \nu + n + \pi^+ \end{array} $	Approximate Single Pulse (Second pulse too low)
Kaon Production	1.1	0.2	$ \begin{array}{l} \nu_l + n \rightarrow l^- + \Lambda + K^+ \\ \nu_l + p \rightarrow l^- + p + K^+ \end{array} $	Double Pulse

Low energy background

- Removed by energy cut
 - IBD, solar-v, geo-v, and low energy atm-v

Cosmic Muon

 Removed by muon veto and FV cut

Event selection

➤Selection flow

JUNO

Prompt Edep Center to Michel birth place.

Selection result

Criteria		Survival rate of $p \to \bar{\nu}K^+$ (%)		Survival count (fraction) of atmospheric ν			
		Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3
$E_{\rm vi}$		94.6			51299(32.1%)		
R_V	R_V	93.7		47849(29.9%)			
Delayed N _M		74	.4	4.4	20739 ((13.0%)	$1143 \ (0.7\%)$
$\begin{array}{c} \text{Delayed} \\ \text{signal} \\ \text{selection} \\ \end{array} \begin{array}{c} \Delta L \\ N_{\text{s}} \\ \Delta L \end{array}$	ΔL_M	67	.0	4.4	13796	(8.6%)	994~(0.6%)
	N_n	48.4	17.9	—	5403(3.4%)	6857 (4.3%)	-
	ΔL_n	-	16.6	—	—	4472(2.8%)	_
Time	R_{χ}	45.9	9.0	3.8	4326 (2.7%)	581 (0.4%)	716~(0.4%)
character	ΔT	28.3	7.7	2.4	121 (0.07%)	18 (0.01%)	$30 \ (0.02\%)$
selection	E_{1}, E_{2}	27.4	7.3	2.2	1 (0.0006%)	0	0
Total			36.9			1	

- R_{v} : Fiducial volume
- N_M : tagged Michel electron number
- ΔL_M : correlated distance to Michel electron
- N_n : tagged neutron number
- ΔL_n : correlated distance to neutron
- R_{χ} : χ^2 ratio

Signal efficiency : 36.9%

Best limit: $5.9 imes 10^{33}$ yrs from Super-K

Nucleon decay: invisible neutron decay

JUNO

Bounded neutrons in ¹²C : two invisible decay modes

- $n \rightarrow inv \ (^{12}C \rightarrow ^{11}C^*)$
- $nn \rightarrow inv ({}^{12}C \rightarrow {}^{10}C^*)$

De-excitation modes have triple coincidence feature

$$\begin{array}{ll} {}^{11}\mathrm{C}^* \to n + & {}^{10}\mathrm{C} & (Br_{n1} = 3.0\%) \\ {}^{11}\mathrm{C}^* \to n + & \gamma + {}^{10}\mathrm{C} & (Br_{n2} = 2.8\%) \\ {}^{10}\mathrm{C}^* \to n + & {}^{9}\mathrm{C} & (Br_{nn1} = 6.2\%) \\ {}^{10}\mathrm{C}^* \to n + p + & {}^{8}\mathrm{B} & (Br_{nn2} = 6.0\%) \end{array}$$

Yuri Kamyshkov, Edwin Kolbe PRD 67, 076007 (2003)

Signal characteristic of signal prompt energy

Signal characteristic of signal energy

Backgrounds

- Alpha-n
- > Triple (Prompt-Delayed-Decay) ν/i
 - Atm v NC

$$\begin{array}{l} \nu/\bar{\nu} + ^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + n + ^{11}\mathrm{C} \;, \\ \bullet \;\; \nu/\bar{\nu} + ^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + 2n + ^{10}\mathrm{C} \;, \\ \nu/\bar{\nu} + ^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + 3p + n + ^{8}\mathrm{Li} \end{array}$$

Consider 10 years data taking

- Signal rate
 - from the final sensitivity result

Selection criteria						
Quantity	$n \rightarrow inv$	$nn \rightarrow inv$				
$R_{1,2,3} \mathrm{[m]}$	< 16.7	< 16.7				
$E_1 \; [\mathrm{MeV}]$	0.7-12	0.7-30				
$E_2 [\mathrm{MeV}]$	1.9-2.5	1.9-2.5				
$E_3 \; [\mathrm{MeV}]$	1.5-3.5	3.0-16.0				
$\Delta T_{12} [\mathrm{ms}]$	< 1	< 1				
ΔT_{23} [s]	0.002-100	0.002-3.0				
ΔR_{12} [m]	< 1.5	< 1.5				
$\Delta R_{23} [\mathrm{m}]$	< 1.5	< 1.5				
$\Delta R_{13} \; [\mathrm{m}]$	< 1.0	< 1.0				

i = 1, 2, 3 represents the Prompt, Delayed, Decay signal

Notations of the interested parameters $E_i \ (i = 1, 2, 3)$: Reconstruct energy $R_i \ (i = 1, 2, 3)$: Radial position $\Delta R_{ij} \ (i, j = 1, 2, 3, i < j)$: Distance between signal pair (i^{th}, j^{th}) $\Delta T_{ij} \ (i, j = 1, 2, 3, i < j)$: Time interval between signal pair (i^{th}, j^{th})

Signal characteristic of $(n \rightarrow inv)$

JUNO

Select region

24

Event selection ($n \rightarrow inv$)

Signal characteristic of signal energy

Event selection $(nn \rightarrow inv)$

Consider 10 years data taking

- Signal rate
 - from the final sensitivity result

Signal efficiencies

Selection Criterion	n	$\rightarrow inv$	$nn \rightarrow inv$		
	$^{11}\mathrm{C}^* \rightarrow n + ^{10}\mathrm{C}$	$^{11}\mathrm{C}^* \to n + \gamma + ^{10}\mathrm{C}$	$^{10}\mathrm{C}^* \to n + ^{9}\mathrm{C}$	$^{10}\mathrm{C}^* \to n + p + ^8\mathrm{B}$	
All triple signals	100	100	100	100	
Muon Veto	65.7 ± 0.2	65.5 ± 0.2	80.8 ± 0.2	78.3 ± 0.2	
Fiducial Volume	83.5 ± 0.4	82.7 ± 0.4	82.9 ± 0.4	83.1 ± 0.4	
Event Selection	75.4 ± 0.9	89.7 ± 0.3	89.2 ± 0.3	83.5 ± 0.3	
Multiplicity Cut	93.8 ± 0.1	93.8 ± 0.1	$99.9 \pm \mathcal{O}(10^{-4})$	$99.9 \pm \mathcal{O}(10^{-4})$	
Combined Selection	38.8 ± 0.5	45.6 ± 0.3	59.7 ± 0.4	54.3 ± 0.4	

Background suppression

Two suppression method

- Pulse Shape Discrimination
 - Particle's emission photon time are different
- Multi Variate Analysis
 - Combine multidimensional features

Sensitivity

An order of magnitude improvement to the current best limits in 2 years data taking

► JUNO is a large LS detector

- 20 kton LS
 - 1.45×10^{33} free protons, 5.30×10^{33} bound protons/neutrons
- Competitive sensitivities for nucleon decay (some channels)
 - Nucleon decay (JUNO 10-year sensitivity)
 - $\tau/B(p \rightarrow \overline{v} K^+) > 9.6 \times 10^{33}$ year at 90% C.L.
 - + $\tau/B(n \rightarrow inv) > 5.0 \times 10^{31}$ year at 90% C.L.
 - + $\tau/B(nn \rightarrow inv) > 1.4 \times 10^{31}$ year at 90% C.L.
- >JUNO construction near completion, overcoming challenges
- >JUNO has the potential to study nucleon decay and test new physics

Thank you for your attention!

Backup

Muti-pulse Fitting

(a) Hit time spectrum of a proton decay event

(b) Hit time spectrum of an atmospheric ν event

>NC background

\succ Search for $p \rightarrow \overline{v} K^+$ in JUNO

20 kton LS: Free proton: 1.45×10^{33} Bound proton: 5.30×10^{33}

Kinetic energy of *K*⁺

Free proton → 105 MeV Bound proton: ↓

- 5. De-excitation of remaining nuclear: could emit $\gamma/p/n$.
- Modify GENIE generator
- Implement de-excitation with TALYS

H. Hu, W.L. Guo et al, PLB 831, 137183(2022)

