

The Deep Underground Neutrino Experiment (DUNE): ND-LAr and the 2x2 Demonstrator

Kevin Wood, <u>kwood@lbl.gov</u>, on behalf of the DUNE Collaboration CoSSURF 2024, Sanford Underground Research Facility May 14, 2024

DUNE Overview

- Long-baseline accelerator-based neutrino oscillation experiment that will vastly improve the precision of neutrino oscillation parameter measurements
 - Mitigation of statistical uncertainties:
 - Unprecedented neutrino beam intensity: $1.8 \text{ MW} \rightarrow 2.1 \text{ MW}$
 - Massive far detector: up to 4 modules with 17 kton LAr / module
 - Mitigation of systematic uncertainties:
 - Highly performant near detector complex

Example: T2K Systematic Uncertainty

- Systematic errors on the shape of the distributions also have important impact on oscillation measurements
- Results limited by statistics
- Off-axis \rightarrow sampling narrow energy band
 - DUNE's wide band beam will be more challenging

Eur. Phys. J. C (2023) 83:782

Sample		Uncertainty source (%)			Elux Olytomation (0/)	$T_{atal}(0/)$
		Flux	Interaction	FD + SI + PN	Flux (%)	10tal (%)
1Rµ	v	2.9 (5.0)	3.1 (11.7)	2.1 (2.7)	2.2 (12.7)	3.0 (13.0)
	\overline{v}	2.8 (4.7)	3.0 (10.8)	1.9 (2.3)	3.4 (11.8)	4.0 (12.0)
1R <i>e</i>	v	2.8 (4.8)	3.2 (12.6)	3.1 (3.2)	3.6 (13.5)	4.7 (13.8)
	\overline{v}	2.9 (4.7)	3.1 (11.1)	3.9 (4.2)	4.3 (12.1)	5.9 (12.7)
1Re1de	v	2.8 (4.9)	4.2 (12.1)	13.4 (13.4)	5.0 (13.1)	14.3 (18.7)

Enter DUNE

- Compare 10 years of T2K data to projection for the first few years of DUNE data
 - "Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment" <u>Phys.Rev.D 105 072006 (2022)</u>
 - Projected spectra for 100 kt-MW-CY exposure
 - Few years of data assuming 57% uptime and NuFIT 4.0 best fit

T2K Run 1-10 Preliminary

BERKELEY LAB

DUNE (Phase 1) Near Detector Complex

- Moveable LArTPC system
 - ND-LAr: novel LArTPC with pixelated readout and 70 optically isolated TPC volumes
 - TMS: spectrometer for momentum and charge measurement of
 - \mathbf{v}_{μ} -CC muons exiting ND-LAr
 - PRISM: ND-LAr + TMS system moves up to 28.5m (2.8°) off-axis
- Multi-purpose on-axis magnetized detector
 - SAND: Straw tube tracker with Argon target inside KLOE superconducting solenoid

NEUTRINO EXPERIMEN

ND-LAr Detector

- 7x5 grid of 1x1x3 m³ LArTPC modules
 - 7x5x3 m³ active volume
 - Moveable transverse to neutrino beam
 - Sample off-axis flux
- Designed to cope with high-pileup environment
 - ~60 interactions / 1.2 MW spill
- Optical segmentation provides interaction-level timing information
- Native 3D readout from pixelated charge readout mitigates hit ambiguity
 - \leq 4mm pixel pitch (granularity)
 - > 14M pixel channels!

1.2 MW LBNF Spill Simulation

Coping with Pileup

recert

- LArTPC charge readout very slow compared to beam microstructure
 - ~300us maximum drift, ~10us beam spill
- Leverage scintillation light readout for timing information: must match charge to light

Full Detector Volume (no smearing)

Coping with Pileup

- LArTPC charge readout very slow compared to beam microstructure
 - ~300us maximum drift, ~10us beam spill
- Leverage scintillation light readout for timing information: must match charge to light
- \rightarrow enabled through optical segmentation

1/70th Detector Volume (no smearing)

ND-LAr Module

- 2 optically isolated TPCs per module
 - 50 cm drifts → 25 kV for 500 V/cm
- Pixelated charge readout with O(4mm) granularity
- Light readout with modules on the vertical field cage panels

LArPix Charge Readout System

- Pixel tile PCB containing 1000's of pixels/ft² and minimal active components
- LArPix ASIC loaded onto backside of pixel tiles
- Scalable system for instrumental large areas:
 - Data rates: made manageable by channel-by-channel self-triggering
 - Cryogenic compatibility: < 100µW / channel</p>
 - Affordable: Full system cost approaching ~\$0.10/channel or ~\$10k/m2
 - Practical: All components produced by commercially available vendors
 - Robust: Hydra I/O Networking provides protection against single ASIC failures

pixel tiles (+light traps)

TDAC[4:0]

5-b DAC

Light Readout System

- Two complementary designs for light traps
 - Increase coverage with fixed channel count

	ArcLight	LCM
Efficiency	~0.2%	~0.6%
Spatial resolution	~5cm	~10cm
Notes	 Large sense area High dynamic range 	Scalable designMechanically robust

ArcLight module [prototype dimensions]

- <10ns single hit timing resolution
- Common SiPM readout system
 - Analog signals feedout from cryo
 - VGA and ADC cards in VME crates on the warm side
- Common control and DAQ software

LCM [prototype dimensions]

K. Wood - CoSSURF 2024

2x2 Demonstrator

- Demonstration of ND-LAr design in reconstructing neutrino interactions •
- 2x2 array of 1.2 x 0.6 x 0.6 m³ modules containing >300K pixel channels
- 4 modules operated individually at University of Bern
 - O(10⁹) cosmic events

Pixelated

Anode Tile (70×70 pixe

LCM Tiles

ArCLight Tile

BERKELEY LAB

2x2 Demonstrator

- Demonstration of ND-LAr design in reconstructing neutrino interactions
- 2x2 array of 1.2 x 0.6 x 0.6 m³ modules containing >300K pixel channels
- 4 modules operated individually at Bern
 - O(10⁹) cosmic events
- @ Fermilab underground facility (MINOS hall) between repurposed Minerva planes
- Will measure neutrino interactions in the GeV-energy regime from the NuMI beam

BERKELEY LAB

ND-LAr / 2x2 Detector Simulation

·····]||

BERKELEY LAB

- DUNE's near detector is critical to achieving its physics goals
- ND-LAr is at the heart of the DUNE near detector
 - On track to begin build in 2026-2027, operations in 2030-2031
- The 2x2 Demonstrator is coming online imminently and will measure DUNE's very first neutrinos! (*not for DUNE's main physics measurements, but still...)

April 2024 2x2 Analysis Workshop @ Fermilab

Thank you!

January 2024 DUNE Collaboration Meeting @ CERN

Backups

1.2 MW LBNF Spill Simulation

1.2 MW LBNF Spill Simulation (inc. det. sim.)

K. Wood - CoSSURF 2024

NEUTRINO EXPERIMENT

1.2 MW LBNF Spill Simulation (inc. det. sim.)

K. Wood - CoSSURF 2024

NEUTRINO EXPERIMENT

DUNE/LBNF Off-axis Fluxes (PRISM)

Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv:2002.03005

K. Wood - CoSSURF 2024

LArPix Charge Readout System

- Pixel tile PCB containing 1000's of pixels/ft² and minimal active components
- LArPix ASIC loaded onto backside of pixel tiles
- Single 34-pin ribbon cable per tile
- PACMAN controller
 - Delivers clean power to 100's of ASICs
 - Establishes I/O with ASICs
 - Handles DAQ and configuration for up to 8 tiles

BERKELEY LAB

ND-LAr / 2x2 Analysis Pipeline

- Analysis pipeline being prepared to promptly analyze 2x2 data
 - End-to-end simulation
 - Data processing
 - Calibrations
 - Event reconstruction
 - High level analysis
- Directly portable to ND-LAr (MINERvA stand in for downstream muon spectrometer)

