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Intranuclear neutron antineutron transition
❏ A process where neutron transforms into an anti-neutron within a nucleus.
❏ The intranuclear transition followed by subsequent annihilation results in final state 

particles (mostly pions) with ~ zero net momentum and total energy ~ twice the nucleon 
mass. 
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Neutron antineutron 
transition

Annihilation with a 
nucleon → unique 
star-like topology

Phys.Rev.D 103 012008

Phys.Rep. 413 197

Nucl.Phys. A720 357

Credit:Y. Kamyshkov

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.012008#:~:text=Phys.,years%20exposure%20of%20Super%2DKamiokande
https://www.sciencedirect.com/science/article/pii/S0370157305001055?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0375947403009126?via%3Dihub
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Intranuclear neutron antineutron transition
❏ A process where neutron transforms into an anti-neutron within a nucleus.
❏ The intranuclear transition followed by subsequent annihilation results in final state 

particles (mostly pions) with ~ zero net momentum and total energy ~ twice the nucleon 
mass. 

❏ Intranuclear n → n transition is suppressed due to nuclear potential. 
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Neutron antineutron 
transition

Annihilation with a 
nucleon → unique 
star-like topology

Credit:Y. Kamyshkov

Bound neutron lifetime
Free neutron lifetime

Suppression factor

The value of R depends on the type of 
nuclei e.g. 
for 40Ar, R is 5.6x1022 s-1

for 16O,  R is 5.17x1022s-1

-
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Why is this process interesting?
❏ This baryon number violating (BNV) process is a high-priority objective of particle 

physics.
❏ If observed, would shed light on matter-antimatter asymmetry.
❏ If not discovered by future, more sensitive experiments like HyperK & DUNE, would 

tightly constrain the theories of baryogenesis 
❏ *Provides an important contribution to our understanding of baryon asymmetry of 

the Universe.
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*Phys. Rev.D 87 115019
*Phys. Rev. D 87, 075004

For further details on BNV, refer to talk by Linyan Wan

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.115019
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.075004
https://indico.sanfordlab.org/event/68/sessions/193/#20240515
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Current best limit

❏ Current best limit on nucleus-bound neutron transition time is provided by the 

SuperKamiokande experiment (using 16O).       
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Experiment Exposure Signal selection 
efficiency

Observed events Expected 
background

Limit on bound 
neutron lifetime at 
90%CL

SuperKamiokande 6050 days 4.1% 11 9.3 ± 2.7 3.6 x 1032 years

 Phys.Rev.D 103 012008

❏ The most stringent limit on free neutron transition time is provided by the ILL in 
Grenoble and is 0.86x108s with 90%CL.     Z.Phys.C 63 409

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.012008#:~:text=Phys.,years%20exposure%20of%20Super%2DKamiokande
https://link.springer.com/article/10.1007/BF01580321
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This search with the MicroBooNE detector
❏ This talk presents the first demonstration for the search of this process within an 40Ar 

nucleus using a liquid argon time projection chamber (LArTPC) based detector.

❏ Important proof-of-principle for next generation LArTPC detectors such as Deep 
Underground Neutrino Experiment (DUNE).
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arXiv: 2308.03924 [submitted to JINST]

Same detector technology
Different mass (MicroBooNE is ~ x500 smaller than DUNE)
Different backgrounds

For further details on rare, BNV processes in DUNE,  refer to talk by Josh Barrow

https://arxiv.org/abs/2308.03924
https://indico.sanfordlab.org/event/68/sessions/154/#20240515
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The MicroBooNE experiment
❏ The MicroBooNE detector (85 tonne active mass LArTPC) collected data from 2015–2021.
❏ The detector was operated on surface (subject to cosmic ray backgrounds).
❏ Exposed to pulsed neutrino beam from two different beamlines-

❏ On-axis to Booster Neutrino Beamline (BNB).
❏ Off-axis to Neutrinos at the Main Injector beamline (NuMI).

❏ Recorded off-beam data collected using a random trigger anti-coincident to the 
neutrino beam (no neutrino interactions) → used for this analysis.
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For further details on MicroBooNE and latest physics results,  refer to talk by Brandon 
Eberly

https://indico.sanfordlab.org/event/68/sessions/157/#20240516
https://indico.sanfordlab.org/event/68/sessions/157/#20240516
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LArTPC detector technology
❏ Detection mechanism-

❏ Ionization charge
❏ Scintillation light

❏ Results in high resolution images of interaction with 
information of deposited ionization as a function of wire 
and time → leverage this capability to develop 
image-based analysis using deep-learning (DL) 
techniques to search for n → n signals. 
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Analysis approach
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Reconstructed clusters* 
over 2.3 ms exposure 

intervals

Image-based selection 
using machine-learning 
(ML) and deep-learning 

(DL) techniques 

Limit on lifetime of n→n 
process with 90% CL

2.3 ms of readout 
window “an 
interaction”

Wire 

Ti
m

e

-

*Using wirecell reconstruction framework JINST 16 P06043

https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043
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❏ The analysis used ~8000s of data.
❏ Only a fraction of this data, corresponding to 372s, is used to report the measurement.

Exposure

2976s of total data (training sample)

3720s of total data (test sample)

372s of 
total data 

Analysis development → to train ML 
and DL algorithms.

Running inference to evaluate 
signal selection efficiency and 
data-driven background.

Measurement and 
reporting results 
(demonstrative limit)
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Background
❏ Real off-beam data (no neutrino interactions) is used to simulate a background sample, 

consisting predominantly cosmic ray muons and/or the induced electromagnetic and 
hadronic showers.
❏ Background interaction rate for this search is evaluated by direct measurement 

making use of the off-beam data (corresponding to 3720s of exposure).
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Wire

Ti
m

e

2.3 ms of readout 
window “an 
interaction”
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Signal
❏ Signal interactions are simulated using the GENIE event generator
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GEANT4
Accounts for hadron-Ar 

reinteractions

Detector simulationGENIE (hA-Local Fermi Gas)
Simulates n→ n interactions-
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Signal
❏ Signal interactions are simulated using the GENIE event generator
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GEANT4
Accounts for hadron-Ar 

reinteractions

Detector simulationGENIE (hA-Local Fermi Gas)
Simulates n→ n interactions-

In LArTPC, final state 
particles are visible due to 
their ionization energy 
depositions

100 cm
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Signal overlay sample 

14

❏ The GENIE simulated signal 
interactions are overlaid onto 
the background (real cosmic 
data)
❏ Used to estimate the 

signal selection efficiency. 
❏ This analysis assumed the 

presence of negligible signal in 
the off-beam data (consistent 
with the SuperKamiokande best 
limit) corresponding to 372s 
and 3720s of exposure. 

Background:
Real cosmic data

Overlay:
Simulated signal onto 
the background
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Image-based selection
❏ This analysis utilized 2D topological features of signal and background interactions to 

train ML algorithm-
❏ Signal has localized, semi-spherical star-like topology.
❏ Typical cosmic ray background interactions have extended track-like topology (from 

cosmics)
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Different scale for two plots
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Image-based selection
❏ The topological features are quantified using the extent in space and time and number 

of spacepoints in a cluster.
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Boosted decision tree

❏ Boosted decision tree (BDT) → 
reject cosmic background 
interactions. 

❏ Remaining clusters are used to 
train a DL algorithm (a sparse 
Convolution Neural Network 
(CNN)*)
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*[1]: arxiv:1711.10275
*[2]: arxiv:1706:01307
*[3]: Phys. Rev. D 103 052012

https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1706.01307
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
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Convolution neural network
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Sparsified (Localized) input 
images of a given interaction 
(selected cluster), including 
only position, time, and hit 
value.

*A sparse CNN with VGG16 network architecture → trained using 1 million interactions as inputs.

*[1]: arxiv:1711.10275
*[2]: arxiv:1706:01307
*[3]: Phys. Rev. D 103 052012

Example of signal 
cluster

https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1706.01307
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
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Convolution neural network
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Sparsified (Localized) input 
images of a given interaction 
(selected cluster), including 
only position, time, and hit 
value.
*[1]: arxiv:1711.10275
*[2]: arxiv:1706:01307
*[3]: Phys. Rev. D 103 052012

CNN>0.8 is selected 
(optimized based on 
statistical-only sensitivity as a 
figure of merit)

*A sparse CNN with VGG16 network architecture → trained using 1 million interactions as inputs.

https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1706.01307
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
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Topological cuts

Topological cuts are 
applied in order to reject 
zero-extent and very 
low-extent clusters which 
can not represent signal 
topology
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Using test sample (3720s of exposure) Signal Background

No selection 1,633,525 1,618,827

Image-based selection 1,202,281 142

Topological cuts 1,147,57 32

Signal selection efficiency 70.2%

Background efficiency 0.0020%

Number of interactions

The expected background corresponding to 
372 s of exposure is 3.20 ± 1.79 (stat.) ± 0.57 
(syst.)
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Systematic uncertainties - Signal
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GEANT4
Accounts for hadron-Ar 

reinteractions

Detector simulation

Generate different samples 
corresponding to different 
GENIE models (hN-LFG, 
hA-Bodek Ritchie(BR), and 
hN-BR)

Apply Selection

Signal selection efficiency (𝜺)

Number of generated 
interactions for any given 
model

Signal selection efficiency for 
MicroBooNE’s default GENIE model 
(hA-LFG)

-

GENIE (hA-Local Fermi Gas 
(LFG))

Simulates n→ n interactions-
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Systematic uncertainties - Signal
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GEANT4
Accounts for hadron-Ar 

reinteractions

Detector simulation

Generate different samples to 
account for differences in data 
and simulation for charge and 
light response

Apply Selection

Signal selection efficiency (𝜺)

Number of generated 
interactions for any given 
model

Signal selection efficiency for 
MicroBooNE’s default GENIE model 
(hA-LFG)

GENIE (hA-Local Fermi Gas 
(LFG))

Simulates n→ n interactions-
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Systematic uncertainties - Signal
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GEANT4
Accounts for hadron-Ar 

reinteractions

Detector simulation
GENIE (hA-Local Fermi Gas 

(LFG))
Simulates n→ n interactions-

Re-weighting scheme to 
account for hadron-Ar 
reinteractions due to charged 
hadrons (𝝅+, 𝝅-, p)

i represents number of weights
W: weighted sample (takes 
weights generated for charged 
hadrons into account)
N: nominal sample
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Systematic uncertainties - Signal
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GEANT4
Accounts for hadron-Ar 

reinteractions

Detector simulation
GENIE (hA-Local Fermi Gas 

(LFG))
Simulates n→ n interactions-

Systematic uncertainties on signal 
selection efficiency

GENIE 4.85%

Detector 6.72%

GEANT4 2.32%

Total systematic uncertainty on signal 8.61% (quadrature sum)



Daisy Kalra (Columbia U.)

❏ Since, background is measured in-situ from the real cosmic data, the uncertainty comes 
from the statistical uncertainty on number of final selected background interactions in 
the test data sample which is 17.68%.
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Systematic uncertainties - Background
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Results

❏ The selected clusters in 
observed interactions are 
localized to few tens of 
wires and are therefore, 
selected as signal 
candidate interactions.
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Exposure Total 
interactions

Observed 
interactions

Expected 
background

Demonstrative limit 
90%CL

MicroBooNE 372s 168636 2 3.2 1.1 x 1026 years

❏ Due to the absence of an excess of interactions above the expected background, a 
demonstrative lower limit on n → n process is derived using *TRolke package in ROOT

Nucl.Instrum.Meth. A 458 745

-

https://www.sciencedirect.com/science/article/pii/S0168900200009359?via%3Dihub
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Comparison to SuperKamiokande 
❏ Substantial improvement in signal selection efficiency with MicroBooNE using 

image-based analysis.
❏ Significantly lower exposure using randomly triggered off-beam data.
❏ Significantly higher background due to on-surface operation of detector.
❏ The obtained limits are lower than the current best limits from the SuperKamiokande 

because of the small-sized detector and low exposure. 
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Nucleus Exposure Signal 
selection 
efficiency

Observed 
interactions 
(events)

Expected 
background

Limit on 
nucleus-bound 
neutron lifetime
90%CL

MicroBooNE 40Ar 372s 70.2% 2 3.2 1.1 x 1026 years

SuperKamiokande 16O 6050 days 4.1% 11 9.3 3.6 x 1032 years
 Phys.Rev.D 103 012008

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.012008#:~:text=Phys.,years%20exposure%20of%20Super%2DKamiokande
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Free neutron transition lifetime

Experiment Nucleus Suppression factor 
(R)

Free neutron 
lifetime (90%CL)

MicroBooNE 40Ar 5.6x1022 s-1 2.6x105 s

SuperKamiokande 16O 5.17x1022 s-1 4.7x108 s

ILL - - 0.86x108 s
 Phys.Rev.D 103 012008

Z.Phys.C 63 409

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.012008#:~:text=Phys.,years%20exposure%20of%20Super%2DKamiokande
https://link.springer.com/article/10.1007/BF01580321
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Proof-of-principle demonstration for DUNE
❏ The DUNE exposure is projected to be 109 larger than MicroBooNE.
❏ Achieving similar signal selection efficiency with DUNE as for MicroBooNE, while also 

achieving high atmospheric neutrino background rejection1, would increase DUNE’s 
statistical-only sensitivity by seven-fold compared to the MicroBooNE’s2 reported 
sensitivity.
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(1) doi:10.2172/1426674
(2) arXiv: 2308.03924 

https://inspirehep.net/literature/1662648
https://arxiv.org/abs/2308.03924
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Real-time triggering for BNV searches in DUNE

Unique kinked topology for 
proton decay channel

❏ The developed analysis utilizing topological features presents a unique approach to select 
rare, BNV  signatures e.g. as demonstrated by selecting n → n signatures and could also be 
extended to select proton decay (p → 𝜈K+) signatures   →could potentially lend itself to 
online data selection for rare, BNV signatures for DUNE, if applied at raw waveform 
level information (without utilizing full reconstruction information).

-

For further details on proton decay channels, refer to talk by Linyan Wan

https://indico.sanfordlab.org/event/68/sessions/193/#20240515
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Real-time triggering for BNV searches in DUNE

DUNE baseline trigger strategy is 
currently being demonstrated online 
in MicroBooNE (J.Phys.Conf.Ser 2374 

(2022) 1,012163)

-

DUNE trigger strategy

❏ The developed analysis utilizing topological features presents a unique approach to select 
rare, BNV  signatures e.g. as demonstrated by selecting n → n signatures and could also be 
extended to select proton decay (p → 𝜈K+) signatures   →could potentially lend itself to 
online data selection for rare, BNV signatures for DUNE, if applied at raw waveform 
level information (without utilizing full reconstruction information).

https://inspirehep.net/literature/2611972
https://inspirehep.net/literature/2611972
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Conclusions

❏ The analysis demonstrates LArTPC’s capability to search for this process with high 
signal selection efficiency and excellent background rejection.

❏ The developed analysis using real data from MicroBooNE holds great promise to 
search for this process in future large, well-shielded detectors like DUNE with 
enhanced sensitivity and to provide competitive limit on the lifetime of this process. 
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-



Daisy Kalra (Columbia U.) 34

Thank you!
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Physics goals of the MicroBooNE experiment
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4. R&D for the next-generation 
LArTPC-based experiments.

2. Understand 
neutrino-argon 
interactions

1. Resolve source of 
unexplained MiniBooNE 
Low Energy Excess

3. Searching for 
beyond-the-Standard 
Model (BSM) physics 
processes

Nature 599, 565-570 (2021)

https://www.nature.com/articles/s41586-021-04046-5
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CNN score cut optimization
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Detector systematics
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Selected simulated signal cluster 

MicroBooNE Run 14954 Subrun 12 Event 639 
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Selected simulated signal cluster 
MicroBooNE Run 14954 Subrun 12 Event 630 
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Selected background cluster 
MicroBooNE Run 15152 Subrun 66 Event 3332 
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MicroBooNE Run 14694 Subrun 60 Event 3045 

Selected background cluster 


