First demonstration of LArTPC-based search for intranuclear neutron-antineutron transitions & annihilation in Ar using the MicroBooNE detector

Daisy Kalra On behalf of the MicroBooNE collaboration CoSSURF-2024 (May 15, 2024)

Intranuclear neutron antineutron transition

- A process where neutron transforms into an anti-neutron within a nucleus.
- The intranuclear transition followed by subsequent annihilation results in final state particles (mostly pions) with ~ zero net momentum and total energy ~ twice the nucleon mass.

nucleon \rightarrow unique star-like topology 40Ar

Annihilation with a

	$\bar{n} + p$	$\bar{n} + n$		
Channel	Branching ratio	Channel	Branching ratio	
$\pi^+\pi^0$	1.2%	$\pi^+\pi^-$	2.0%	
$\pi^+ 2\pi^0$	9.5%	$2\pi^0$	1.5%	
$\pi^+ 3 \pi^0$	11.9%	$\pi^+\pi^-\pi^0$	6.5%	
$2\pi^+\pi^-\pi^0$	26.2%	$\pi^+\pi^-2\pi^0$	11.0%	
$2\pi^+\pi^-2\pi^0$	42.8%	$\pi^{+}\pi^{-}3\pi^{0}$	28.0%	
$2\pi^+\pi^-2\omega$	0.003%	$2\pi^+2\pi^-$	7.1%	
$3\pi^+2\pi^-\pi^0$	8.4%	$2\pi^{+}2\pi^{-}\pi^{0}$	24.0%	
		$\pi^+\pi^-\omega$	10.0%	
		$2\pi^+2\pi^-2\pi^0$	10.0%	

Phys.Rev.D 103 012008

Nucl.Phys. A720 357

Phys.Rep. 413 197

Credit:Y. Kamyshkov Daisy Kalra (Columbia U.)

Intranuclear neutron antineutron transition

- A process where neutron transforms into an anti-neutron within a nucleus.
- The intranuclear transition followed by subsequent annihilation results in final state particles (mostly pions) with ~ zero net momentum and total energy ~ twice the nucleon mass.
- □ Intranuclear $n \rightarrow \bar{n}$ transition is suppressed due to nuclear potential.

Credit:Y. Kamyshkov Daisy Kalra (Columbia U.)

Why is this process interesting?

- This baryon number violating (BNV) process is a high-priority objective of particle physics.
- □ If observed, would shed light on matter-antimatter asymmetry.
- □ If not discovered by future, more sensitive experiments like HyperK & DUNE, would tightly constrain the theories of baryogenesis
 - Provides an important contribution to our understanding of baryon asymmetry of the Universe.

Current best limit

Current best limit on nucleus-bound neutron transition time is provided by the SuperKamiokande experiment (using ¹⁶O). <u>Phys.Rev.D 103 012008</u>

Experiment	Exposure	Signal selection efficiency	Observed events	Expected background	Limit on bound neutron lifetime at 90%CL
SuperKamiokande	6050 days	4.1%	11	9.3 ± 2.7	3.6 x 10 ³² years

The most stringent limit on free neutron transition time is provided by the ILL in Grenoble and is 0.86x10⁸s with 90%CL. <u>Z.Phys.C 63 409</u>

This search with the MicroBooNE detector

- This talk presents the first demonstration for the search of this process within an ⁴⁰Ar nucleus using a liquid argon time projection chamber (LArTPC) based detector. <u>arXiv: 2308.03924 [submitted to JINST]</u>
- Important proof-of-principle for next generation LArTPC detectors such as Deep Underground Neutrino Experiment (DUNE).

For further details on rare, BNV processes in DUNE, refer to talk by Josh Barrow

The MicroBooNE experiment

- The MicroBooNE detector (85 tonne active mass LArTPC) collected data from 2015–2021.
- The detector was operated on surface (subject to cosmic ray backgrounds).
- Exposed to pulsed neutrino beam from two different beamlines-
 - On-axis to Booster Neutrino Beamline (BNB).
 - □ Off-axis to Neutrinos at the Main Injector beamline (NuMI).
- □ Recorded off-beam data collected using a random trigger anti-coincident to the neutrino beam (no neutrino interactions) → used for this analysis.

For further details on MicroBooNE and latest physics results, refer to <u>talk by Brandon</u> <u>Eberly</u>

LArTPC detector technology

- Detection mechanism-
 - Ionization charge
 - Scintillation light
 - Results in high resolution images of interaction with information of deposited ionization as a function of wire and time \rightarrow **leverage this capability to develop image-based analysis using deep-learning (DL) techniques to search for n** \rightarrow \bar{n} signals.

Analysis approach

Reconstructed clusters* over 2.3 ms exposure intervals Image-based selection using machine-learning (ML) and deep-learning (DL) techniques

Limit on lifetime of $n \rightarrow \bar{n}$ process with 90% CL

2.3 ms of readout window "an interaction"

*Using wirecell reconstruction framework <u>JINST 16 P06043</u>

Time

Exposure

- □ The analysis used ~8000s of data.
 - Only a fraction of this data, corresponding to 372s, is used to report the measurement.

Background

Reconstructed clusters over 2.3 ms exposure intervals

Limit on lifetime of $n \rightarrow \bar{n}$ process with 90% CL

2.3 ms of readout

window "an interaction"

- Real off-beam data (no neutrino interactions) is used to simulate a background sample, consisting predominantly cosmic ray muons and/or the induced electromagnetic and hadronic showers.
 - Background interaction rate for this search is evaluated by direct measurement making use of the off-beam data (corresponding to 3720s of exposure).

Time

Reconstructed clusters over 2.3 ms exposure intervals

Limit on lifetime of n→n process with 90% CL

Signal interactions are simulated using the GENIE event generator

Reconstructed clusters over 2.3 ms exposure intervals

Limit on lifetime of n→n process with 90% CL

□ Signal interactions are simulated using the GENIE event generator

Signal overlay sample

Reconstructed clusters over 2.3 ms exposure intervals Image-based selection using machine-learning (ML) and deep-learning (DL) techniques

Limit on lifetime of n→n process with 90% CL

- The GENIE simulated signal interactions are overlaid onto the background (real cosmic data)
 - Used to estimate the signal selection efficiency.
- This analysis assumed the presence of negligible signal in the off-beam data (consistent with the SuperKamiokande best limit) corresponding to 372s and 3720s of exposure.

Image-based selection

Reconstructed clusters over 2.3 ms exposure intervals

Limit on lifetime of n→n process with 90% CL

- This analysis utilized 2D topological features of signal and background interactions to train ML algorithm-
 - Signal has localized, semi-spherical star-like topology.
 - Typical cosmic ray background interactions have extended track-like topology (from cosmics)

Different scale for two plots

Image-based selection

Reconstructed clusters over 2.3 ms exposure intervals

Limit on lifetime of n→n process with 90% CL

The topological features are quantified using the extent in space and time and number of spacepoints in a cluster.

Boosted decision tree

Reconstructed clusters over 2.3 ms exposure intervals Image-based selection using machine-learning (ML) and deep-learning (DL) techniques

Limit on lifetime of n→n process with 90% CL

- □ Boosted decision tree (BDT) → reject cosmic background interactions.
- Remaining clusters are used to train a DL algorithm (a sparse Convolution Neural Network (CNN)*)

<u>*[1]: arxiv:1711.10275</u> *[2]: arxiv:1706:01307 *[3]: Phys. Rev. D 103 052012

Convolution neural network

Reconstructed clusters over 2.3 ms exposure intervals Image-based selection using machine-learning (ML) and deep-learning (DL) techniques

Limit on lifetime of n→n process with 90% CL

*A sparse CNN with VGG16 network architecture \rightarrow trained using 1 million interactions as inputs.

Sparsified (Localized) input images of a given interaction (selected cluster), including only position, time, and hit value.

<u>*[1]: arxiv:1711.10275</u> *[2]: arxiv:1706:01307 *[3]: Phys. Rev. D 103 052012

Convolution neural network

Reconstructed clusters over 2.3 ms exposure intervals Image-based selection using machine-learning (ML) and deep-learning (DL) techniques

0.2

0.3

0.4

Limit on lifetime of $n \rightarrow \bar{n}$ process with 90% CL

0.7

0.6

*A sparse CNN with VGG16 network architecture \rightarrow trained using 1 million interactions as inputs.

Sparsified (Localized) input images of a given interaction (selected cluster), including only position, time, and hit value.

<u>*[1]: arxiv:1711.10275</u> *[2]: arxiv:1706:01307 *[3]: Phys. Rev. D 103 052012 CNN>0.8 is selected (optimized based on statistical-only sensitivity as a figure of merit)

0.5

CNN score

Topological cuts

Topological cuts are applied in order to reject zero-extent and very low-extent clusters which can not represent signal topology

Number of interactions

Using test sample (3720s of exposure)	Signal	Background
No selection	1,633,525	1,618,827
Image-based selection	1,202,281	142
Topological cuts	1,147,57	32
Signal selection efficiency	70.2%	
Background efficiency		0.0020%

The expected background corresponding to 372 s of exposure is 3.20 ± 1.79 (stat.) ± 0.57 (syst.)

GENIE (hA-Local Fermi Gas (LFG)) Simulates $n \rightarrow \overline{n}$ interactions

GEANT4 Accounts for hadron-Ar reinteractions

Detector simulation

Generate different samples corresponding to different GENIE models (hN-LFG, hA-Bodek Ritchie(BR), and hN-BR)

Signal selection efficiency (ε)

GENIE (hA-Local Fermi Gas (LFG)) Simulates $n \rightarrow \overline{n}$ interactions

GEANT4 Accounts for hadron-Ar reinteractions

Detector simulation

Generate different samples to account for differences in data and simulation for charge and light response

Apply Selection

Signal selection efficiency (ϵ)

GENIE (hA-Local Fermi Gas (LFG)) Simulates $n \rightarrow \overline{n}$ interactions GEANT4 Accounts for hadron-Ar reinteractions

Detector simulation

Re-weighting scheme to account for hadron-Ar reinteractions due to charged hadrons (π^+ , π^- , p)

$$\sigma = \frac{1}{N_{\rm w}} \sum_{i=1}^{N_{\rm w}} (W_{\rm i} - N)^2,$$

AT

i represents number of weights W: weighted sample (takes weights generated for charged hadrons into account) N: nominal sample

GENIE (hA-Local Fermi Gas (LFG)) Simulates $n \rightarrow \overline{n}$ interactions

GEANT4 Accounts for hadron-Ar reinteractions

Detector simulation

Systematic uncertainties on signal selection efficiency	
GENIE	4.85%
Detector	6.72%
GEANT4	2.32%
Total systematic uncertainty on signal	8.61% (quadrature sum)

Systematic uncertainties - Background

□ Since, background is measured in-situ from the real cosmic data, the uncertainty comes from the statistical uncertainty on number of final selected background interactions in the test data sample which is 17.68%.

Reconstructed clusters over 2.3 ms exposure intervals	Image-based selection using machine-learning (ML) and deep-learning (DL) techniques	-	Limit on lifetime of n→n process with 90% CL
---	--	---	---

□ Due to the absence of an excess of interactions above the expected background, a demonstrative lower limit on $n \rightarrow \bar{n}$ process is derived using *TRolke package in ROOT Nucl.Instrum.Meth. A 458 745

	Exposure	Total interactions	Observed interactions	Expected background	Demonstrative limit 90%CL
MicroBooNE	372s	168636	2	3.2	1.1 x 10 ²⁶ years

Collection Plane Channel

The selected clusters in observed interactions are localized to few tens of wires and are therefore, selected as signal candidate interactions.

Comparison to SuperKamiokande

- Substantial improvement in signal selection efficiency with MicroBooNE using image-based analysis.
- Significantly lower exposure using randomly triggered off-beam data.
- Significantly higher background due to on-surface operation of detector.
- The obtained limits are lower than the current best limits from the SuperKamiokande because of the small-sized detector and low exposure.

	Nucleus	Exposure	Signal selection efficiency	Observed interactions (events)	Expected background	Limit on nucleus-bound neutron lifetime 90%CL
MicroBooNE	⁴⁰ Ar	372s	70.2%	2	3.2	1.1 x 10 ²⁶ years
SuperKamiokande Phys.Rev.D 103 012008	¹⁶ O	6050 days	4.1%	11	9.3	3.6 x 10 ³² years

Free neutron transition lifetime

Suppression factor

Suppression factor (R) depends on the type of nuclei e.g. for 40 Ar, R is 5.6x10²² s⁻¹ for 16 O, R is 5.17x10²²s⁻¹

Experime	nt	Nucleus	Suppression factor (R)	Free neutron lifetime (90%CL)
MicroBooNE		⁴⁰ Ar	5.6x10 ²² s ⁻¹	2.6x10⁵ s
SuperKam	iokande Phys.Rev.D 103 012008	¹⁶ O	5.17x10 ²² s ⁻¹	4.7x10 ⁸ s
ILL	Z.Phys.C 63 409	-	-	0.86x10 ⁸ s

Proof-of-principle demonstration for DUNE

- □ The DUNE exposure is projected to be 10⁹ larger than MicroBooNE.
- Achieving similar signal selection efficiency with DUNE as for MicroBooNE, while also achieving high atmospheric neutrino background rejection¹, would increase DUNE's statistical-only sensitivity by seven-fold compared to the MicroBooNE's² reported sensitivity.

- (1) <u>doi:10.2172/1426674</u>
- (2) <u>arXiv: 2308.03924</u>

Real-time triggering for BNV searches in DUNE

□ The developed analysis utilizing topological features presents a unique approach to select rare, BNV signatures e.g. as demonstrated by selecting $n \rightarrow \bar{n}$ signatures and could also be extended to select proton decay ($p \rightarrow vK^+$) signatures \rightarrow **could potentially lend itself to online data selection for rare, BNV signatures for DUNE, if applied at raw waveform level information (without utilizing full reconstruction information).**

MicroBooNE Public Note - 1071

For further details on proton decay channels, refer to talk by Linyan Wan

Real-time triggering for BNV searches in DUNE

□ The developed analysis utilizing topological features presents a unique approach to select rare, BNV signatures e.g. as demonstrated by selecting $n \rightarrow \bar{n}$ signatures and could also be extended to select proton decay ($p \rightarrow vK^+$) signatures \rightarrow **could potentially lend itself to online data selection for rare, BNV signatures for DUNE, if applied at raw waveform level information (without utilizing full reconstruction information).**

Conclusions

- □ The analysis demonstrates LArTPC's capability to search for this process with high signal selection efficiency and excellent background rejection.
- The developed analysis using real data from MicroBooNE holds great promise to search for this process in future large, well-shielded detectors like DUNE with enhanced sensitivity and to provide competitive limit on the lifetime of this process.

Physics goals of the MicroBooNE experiment

1. Resolve source of unexplained MiniBooNE Low Energy Excess

2. Understand neutrino-argon interactions

3. Searching for beyond-the-Standard Model (BSM) physics processes 4. R&D for the next-generation LArTPC-based experiments.

CNN score cut optimization

CNN criterion	Signal Efficiency	Background Efficiency (10 ⁻⁴)	Normalized Background Estimate	Sensitivity (10 ²⁵ yrs)
0.797	0.8274 ± 0.0003	1.53 ± 0.10	24.8 ± 1.6	2.62
0.798	0.8222 ± 0.0003	1.27 ± 0.09	20.5 ± 1.4	2.83
0.799	0.8012 ± 0.0003	1.08 ± 0.08	17.5 ± 1.3	2.98
0.800	0.7360 ± 0.0003	0.88 ± 0.07	14.2 ± 1.2	2.99
0.801	0.6392 ± 0.0004	0.66 ± 0.06	10.7 ± 1.0	2.95
0.802	0.5081 ± 0.0004	0.50 ± 0.06	8.1 ± 0.9	2.65
0.803	0.3490 ± 0.0004	0.43 ± 0.05	6.9 ± 0.8	1.95

Detector systematics

,

Detector variation	$\eta_{ m err}~\%$	$\eta_{ m errNom}~\%$	$\eta~\%$
Recombination	0.13	0.53	0.54
Light yield	0.22	1.15	1.17
Space charge effect	0.12	0.13	0.18
TPC waveform modeling	0.24	6.59	6.59
Total			6.72

Selected simulated signal cluster

Selected simulated signal cluster

Selected background cluster

Selected background cluster

