Latest Results and Future Directions of **CRESST-III**

May 16, 2024 **Michele Mancuso** Max-Planck-Institut für Physik, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The CRESST collaboration

Cryogenic Rare Event Search with Superconducting Thermometers

with Superconducting Thermometers

Is a direct detection of Dark Matter experiment

8 Institutions 58 Members

CRESST located at LNGS (Laboratori Nazionali del Gran Sasso) in Italy

CRESST detector :

- Cryogenic scintillating calorimeter
- Target material: CaWO₄
- Read out channels: Phonon and Scintillation light

CRESST-III Phase 1 (Low threshold)

• 10 detector modules

CRESST

CRESST-III Phase 2 (LEE investigation)

- Run1 : 10 modified detector modules
- Run2 : novel detector design

CRESST HUT at LNGS

~3600 m.w.e. deep μs: ~3x10^{.8}/(s cm²) γs: ~0.73/(s cm²) neutrons: 4x10^{.6} n/(s cm²)

Towards low mass dark matter sensitivity

The signature of dark matter in a direct detection experiment consists of a recoil spectrum of single scattering events.

$$\frac{dR}{dE}(E,t) = \frac{\sigma_0}{m_{\chi}} \cdot F^2 \cdot \frac{\rho_0}{2\mu_A^2} \int_{v_{min}}^{v_{esc}} \frac{f(\mathbf{v},t)}{v} d^3 v$$

Dark matter particles scatter

- off nuclei
- elastically
- coherently: ~A²
- (spin-independent)
- ρ_0 : local DM density
- σ_0 : cross section at 0 momentum transfer
- m_{χ} : DM particle mass
- μ_A : reduced mass

CRESST

- $\bullet\ F$: nuclear form factor
- $\int_{v_{min}}^{v_{esc}} \frac{f(\mathbf{v},t)}{v} \, \mathrm{d}^3 v$ Integral of the velocity distribution
- + \mathbf{v}_{min} : minimal velocity to produce a recoil of energy E

For a given cross-section:

- The rate increases exponentially towards lower energy
- End point of the spectrum decreases for lower DM particle mass

Expected nuclear recoil spectra

Lower threshold -> better sensitivity

CRESST has the best nuclear recoil threshold in the field

Cryogenic calorimeter detectors

CRESST

CRESST-III Phase 1 (Low threshold) - 2019

Latest result standard scenario

Measured background below ~300eV with a massive calorimeter for the first time

- Data taking period: 11/2016 to 02/2018
- Detector mass: 24 g
- Total exposure: 5.7 kg day
- Analysis Threshold: 30.1 eV

Leading sensitivity between 0.16-1.7 GeV

Unknown background at low energy

Exponential increase in detected events rate for energies below 200eV (low energy excess)

SciPost Phys. Proc. 9, 001 (2022) / arXiv:2202.05097v2

To further improve sensitivity to DM, and access to this part of the parameter space it is important to understand the LEE.

CRESST

In-depth study of detector response

Study of energy calibration at low energy.

Phys. Rev. D: https://doi.org/10.1103/PhysRevD.108.022005

Rigorous threshold analysis:

threshold determined by accepted noise trigger rate

Energy calibration for nuclear recoil

¹⁸²W(n,γ)¹⁸³W

de-excitation with a single γ (6.1MeV)

→ mono-energetic nuclear recoil 112.4eV

Not Dark Matter

Different identical detector measure different spectral shape not compatible with a single common source

CRESST-III Phase 2 (LEE investigation)

Multiple design modifications were applied in the followed data-taking campaign to identify the source of the LEE background

Material dependence stress)
 different target material
 Stress induced by holding two holding structure
 Internal stress two crystal suppliers (different internal

CRESST

CRESST-III Phase 2 (LEE investigation)

Multiple design modifications were applied in the followed data-taking campaign to identify the source of the LEE background

Conference on Science at the Sanford Underground Research Facility | 16 May 2024 | M. Mancuso

Fe-source

CRESST-III Phase 2 (LEE investigation)

Comparison of rate measured with different detectors

None of the modifications had a significant impact on the LEE

exponential decay in the LEE rate

We select a common energy range from 60 eV to 120 eV

Two decay constant: $\tau_1 = 18 \pm 7$ (fast) $\tau_2 = 149 \pm 40$ (slow)

The rate "resets" after warm-up cycles

[https://scipost.org/10.21468/SciPostPhysProc.12.013]

CRESST-III Phase 2 RESULTS - Sapphire

CRESST

LiAlO₂ detector

- Data taking period: 11/2020 to 08/2021
- Detector mass: 10.48 g
- Total exposure: 1.161 kg days
- Analysis Threshold: 85.71 eV

⁶Li (7,5%) and ⁷Li (92,5%)
Ideal element for probing SD DM interactions

DOI: 10.1140/epjc/s10052-022-10140-3

$$\frac{dR}{dE_R} = \frac{2\rho_0}{m_{\chi}} \sigma_{p/n}^{SD} \sum_{i,T} f_{i,T} \left(\frac{J_{i,T}+1}{3J_{i,T}}\right) \cdot \left(\frac{\langle S_{p/n,i,T} \rangle^2}{\mu_{p/n}^2}\right) \eta(v_{min})$$

 $\langle Sn \rangle = \langle Sp \rangle = 0.472$ for ⁶Li, $\langle Sp \rangle = 0.497$ for ⁷Li $\langle Sp \rangle = 0.343$ for ²⁷Al

proton: leading sensitivity for mass range between 0.25 and 2.5 GeV/c2 **neutron**: leading sensitivity for mass range between 0.16 and 1.5 GeV/c2.

DOI:https://doi.org/10.1103/PhysRevD.106.092008

What next?

What do we have learned from this long investigation campaign?

- Rate decays over time
- The rate "resets" after warm-up cycles
- It is not external radioactivity
- different internal/external stress does not reflect in the measured excess
- Excess is not due to passive scintillating parts
- Similar rate shows up in all detector of the same material regardless difference in mass, surface and TES dimension

Development of 3 new detector designs

Detector development for the CRESST experiment JLTP - e-Print: 2311.07318

4π veto, sensitive to holder transmitted events

Stress free, sensitive to TES events origin

Stress free detector, size of the target is optimized for DM sensitivity, suited for scaling up

Novel detector module designs to study the low energy events

- Stress free
- •Two TES
- •No scintillating parts
- •Only copper in the line of sight with the absorber

Goal: Measure the excess in coincidence within the two sensors

- Test electronic sources
- Test TES induced events
- Events induced by mismatch of sensor/absorber differential thermal contraction

CRESST-III Phase 2 – New detectors

E_{TES1-L} (keV)

To access to lower energies we developed a double sensor onto sapphire wafers

All clean pulses Absorber events

E_{TES2-L} (keV)

From test above ground:

- TES related events are 1 component of the excess
- Rise in rate towards low energy for shared events
- Rate decays with a compatible fast decay constant compared to the one measured in CRESST

Submitted epjc: e-Print: 2404.02607

Current data taking:

CRESST

5X CaWO₄ detectors with double sensor paired to standard light detector 4X Silicon on sapphire wafer with double sensor 1X Beaker module

Conclusion and perspective

CRESST has the best nuclear recoil threshold with massive calorimeters

- Leading densitivity for dark matter masses 0.08-1.65 GeV

Low energy excess strongly limits the sensitivity of the experiment

- Detailed study and modeling of the low energy excess with a variety of detector disfavors particle, intrinsic stress or external stress origins.

Novel detectors have been designed and are currently in data taking

- 5X CaWO₄ detectors with double sensor paired to standard LD
- 4X Silicon on sapphire wafer with double sensor
- 1X Beaker module

Dark matter results

- Exploiting LiAIO₂ improves the existing limits for **spin-dependent** interactions.

- Using low-threshold wafer detectors of Al₂O₃ as targets extends reach to dark matter masses of 80 MeV/ c^2 for spin-independent interaction.

CRESST

