Theory of Dark Matter

Joshua Berger Colorado State University

May 15, 2024

CoSSURF 2024

Ultralight/Wavy Dark Matter

DM has to be a boson Wavefunctions overlap in MW: coherent, wavelike

e.g. QCD Axion

Ultraheavy Dark Matter

DM probably has to be a composite Small lab event rate for $m\gtrsim 10^{20}~{
m GeV}$

e.g. Primordial Black Hole

The WIMP sweet spot

Particle DM could "freeze out" of SM plasma

e.g. Lightest Supersymmetric Partner

A Related Story for Interactions

- (1) Equilibrium: DM $\chi + \overline{\chi} \leftrightarrow SM$
- (2) Non-relativistic: SM not sufficiently energetic to produce DM
- (3) Freeze-out: DM too sparse to continue annihilating away

Is This Possible?

Three perspectives:

- Complete theory: solves many puzzles, but highly complex and possibly restrictive
 - ▶ supersymmetry, extra-dimensions, composite SM,
- Simplified model: inspired by complete theory, simpler, more flexible, but don't actually address puzzles Bai, JB: JHEP11 (2013) 171; fermion portals, ...
 An et. al.: PRD89 (2014) 115014; Chang et. al.: PRD89, 015011 (2014); DiFranzo et. al.: JHEP11 (2013)
- Effective theory: covers almost any scenario simply, but comparisons between experiments may break Fitzpatrick et. al.: JCAP02 (2013) 004

DM produced in high energy colliders (e.g. LHC)

DM + "missing" energy produced in high energy colliders (e.g. LHC)

Fermi-LAT and DES: Astrophys.J. 834 (2017) 2, 110

Excess radiation from DM annihilations (e.g. in MW subhalos)

Murgia: Ann.Rev.Nucl.Part.Sci. 70 (2020) 455-483

Excess observed in galactic center photons-is it DM?

LZ: PRL 131, 041002 (2023)

Small energy deposits from DM bumping into nuclei

Fair Comparison w/ Simplified Models

Simplified models still have many parameters

Complementarity between DD/LHC at high/low masses

Complete SUSY Models Still Kicking

Barman et. al.: PRL 131, 011802 (2023)

- ▶ pMSSM: minimal SUSY limited to most pheno-relevant parameters
- Complete models give complex options

Another Option: Heavy SUSY

Chen et. al.: PLB781 (2018) 473-479 Richiuso et. al.: PRD103, 023011 (2021)

- Near-pure Higgisino: a generic option from split SUSY
- Challenging: low cross sections effectively for direct and indirect
- Hopeless for current colliders

Astrophysics Also Matters for DD

Necib et. al.: ApJ 874 (2019) 3

- SDSS + Gaia constraining local properties of DM
- Even more dramatic for inelastic dark matter

From Theory to Experiment

Davoudi et. al.: Phys.Rept. 900 (2021) 1-74

- ▶ Experiments: sensitive to non-relativistic scattering off nuclei
- ► Theory: interactions of DM with quarks and gluons
- ► Mapping requires QCD + nuclear physics

What Are We Missing?

Slow moving: $v \sim 10^{-3} c$ locally

Scatters elastically: tiny energy deposits @ low energy

Single component: fewer constraints on subdominant component

Point-like: no extended structure as in e.g. nuclei

Scatters off nuclei: electron scattering important at low masses

 \implies Continue to look for WIMPs, while thinking about new probes

Boosted Dark Matter

Standard WIMP Dark Matter

- $\blacktriangleright~$ Virial theorem tells us $\sqrt{\langle v^2 \rangle} \approx \sqrt{G~M_{\rm MW}/R_{\rm MW}} \sim 10^{-3}\,c$
- Flux is fixed at $\rho_{\chi} v/m_{\chi}$

Boosted Dark Matter

- $\blacktriangleright~\sqrt{\langle v^2\rangle} \gg 10^{-3}\,c,$ typically close to c
- ► Flux may be modified

Can We Use ν (Far) Detectors?

- The Good: Far detectors (along with HE neutrino telescopes) are the largest detectors on Earth, 10s to 100s of kton
- The Bad: Thresholds are higher than traditional direct detection experiments, typically MeV to GeV
- The Ugly: Neutrinos become a background for searches, usually quite a large and sometimes irreducible background

Super-/Hyper-K

DM to DM Signals

Where?	Galactic center	DM rich	
	Sun		
How?	Heavy to Light Annihilation	Gives part of rest mass	
	Semi-Annihilation		
	Heavy to Light Decay		
What?	Electron scattering		
	Hadron scattering	Striking	
	Inelastic scattering		

Simulating Boosted DM Interactions

Implemented in GENIE!

Resonant

1-2 GeV Need a model

Work in progress w/ Z. Orr

 $\sum_{n \in \mathbb{Q}} \left\{ q = \frac{1}{2} \right\} x$

Deep Inelastic

Above 2 GeV Need to handle low *E*

Implemented in GENIE!

JB: 1812.05616

DM to DM Results

Cosmic Ray Acceleration

- ▶ For neutrino detectors: focus on e^{\pm} cosmic rays, e^{-} detection
- Significant acceleration for $m \lesssim \text{GeV}$
- ▶ Up to 10 GeV recoil electrons!

Ema, Sala, Sato: PRL (2019)

Super-K: PRL (2018)

Dark Matter Rain

Could dark matter have a long range force with standard matter?

- Galactic scale: would mess up DM halo
- ► Earth scale: g_n ≤ 10⁻²⁴ from 5th force, equivalence principle Schlamminger et. al.: PRL 041101 (2008), Fayet: PRD 055039 (2018)
- ► Long range $g_{\chi} \lesssim 4 \times 10^{-6} (m_{\chi}/\text{GeV})^{3/4}$ from dwarf galaxies DavoudiasI: PRD 095019 (2017)

$$m pprox \left\{ egin{array}{ll} \gamma \left(m - g_\chi \phi
ight), & {
m scalar} \ \gamma \left(m - g_\chi \phi, & {
m vector} \end{array}
ight.$$

$$R = \frac{\rho_{\chi}}{m_{\chi}} \left\langle \sigma \, \frac{(1, \gamma^2) \, w^2}{u} \right\rangle \, N_{\text{target}}$$

Acevedo, JB, Denton: 2406.xxxxx

DM Rain: Projected Sensitivity

- No traditional direct detection
- Directional and energy cuts to reduce NC atmo. ν background
- ► Large experiments can look now

Acevedo, JB, Denton: 2406.xxxx

Induced Nucleon Decay

Can dark matter carry baryon number?

Elor, Escudero, Nelson: PRD 99, 035031 (2019)

- ▶ In models like hylogenesis and mesogenesis, yes!
- ► Gives mechanism for matter-anti-matter asymmetry
- ► Can reverse: DM induces proton decay

Davoudiasl, Morrissey, Sigurdson, Tulin: PRL 211304 (2010)

Detecting Induced Nucleon Decay

- Different energy spectrum from spontaneous proton decay
- Sensitivity to couplings 10⁻³ to 10⁻² of collider bounds

JB, Elor: PRL 132, 081002; see also Huang, Zhao: JHEP 077 (2014) Joshua Berger

Zooming Out on DD

DM stops due to Earth overburden/Multiple scattering

Zooming Out on DD

Dark Matter (in) Rocks

- ▶ High mass DM can leave tracks in excavated minerals
- Interpretation of two difference searches in excavated mica
- Other bounds: large plastic detectors, detectors in space, heating of gas clouds and CMB

Acevedo et. al.: JCAP 11 (2023) 085

Macroscopic Dark Matter

Joshua Berger

Detecting MDM

- ► Large detectors heavily favored, depending on energy spectrum
- DeepCore has sensitivity to GeV deposits using SLOP trigger
- ▶ In progress: Monte Carlo for capture & decay chain

Outlook

- Continue to improve WIMP searches and calculations of rates
- ▶ But also: think about models beyond the WIMP
- ▶ Neutrino far detectors can play a key role
- Need new simulations and pipelines to develop searches for exotic DM signals

Backup

Fixed kinetic energy

▶ In nucleon rest frame: Fixed meson K.E.

$$\mathcal{E}_{\phi_{\mathcal{B}}N
ightarrow \xi\mathcal{M}}^{\mathcal{M},\,\mathrm{kin}} = rac{m_{\mathcal{M}}^2 - m_{\xi}^2 + \left(m_N + m_{\phi_B}
ight)^2}{2(m_N + m_{\phi_B})} - m_{\mathcal{M}}$$

Smeared by nucleon motion:

$$p_{\mathcal{M}} \lesssim p_F pprox$$
 240 MeV (Argon)

- Hydrogen in water: no smearing!
- Ideally: simulate this process!

Parameter Space

 $\begin{array}{ll} \checkmark \ \ B \rightarrow \mathcal{B}_{\mathsf{SM}} \psi_{\mathcal{B}} \colon & m_{\psi_{\mathcal{B}}} < m_B - m_p \simeq 4.34 \, \mathrm{GeV} \\ \hline & \checkmark \ \ \psi_{\mathcal{B}} \rightarrow \xi + \phi_{\mathcal{B}} \colon & m_{\psi_{\mathcal{B}}} > m_{\xi} + m_{\phi_{\mathcal{B}}} \\ & \times \ \phi_{\mathcal{B}} + \xi \rightarrow \mathcal{B}_{\mathsf{SM}} \colon & |m_{\phi_{\mathcal{B}}} - m_{\xi}| < m_p + m_e \simeq 938.8 \, \, \mathrm{MeV} \\ & \times \ \ \mathcal{B}_{\mathsf{SM}} \rightarrow \phi_{\mathcal{B}}, \xi \colon & m_{\phi_{\mathcal{B}}}, m_{\xi} < m_p - m_e \\ & \checkmark \ \phi_{\mathcal{B}} + \overline{\phi}_{\mathcal{R}} \rightarrow \xi + \xi \colon & m_{\phi_{\mathcal{R}}} > m_{\xi} \end{array}$

Benchmarks

Benchmark	$m_{\phi_{\mathcal{B}}}$ [GeV]	m_{ξ} [GeV]	
1	0.95	0.92	
2	2.45	1.53	
3р	2.38	1.6	
3k	2.2	1.8	
4p	0.95	0.17	
4k	0.95	0.55	

Parameter Space: K Channel

Joshua Berger

Backgrounds: Atmospheric ν

- Trickiest background: atmo ν NC with $\nu + N \rightarrow \nu + n + \pi$
- ▶ Also: CC, *p* FS with missed particles
- Bkg: events with only π above threshold
- ► K background extremely tiny
- ► Model *v* scattering in GENIE using Bartol fluxes at Soudan (DUNE) and Kamioka (Super-K/Hyper-K)

DUNE Thresholds

- ► Charged particles: cross 10 wires
- ▶ Unstable particles: energetic decay products

Water Cherenkov Thresholds

- ▶ Charged & heavy: require $\beta > 1/n$ for Cherenkov radiation
- ▶ *e* & *γ*: 3.5 MeV

Super-Kamiokande: PRD94, 052010 (2016)

- Unstable particles: energetic decay products
- μ[±] vs. π[±]: challenging to distinguish
 For Cherenkov: assume no distinction

A bit crude... but need experimental input for more!

Model Structure

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{B}}$	Z_2
Y	3	1	-1/3	2/3	1
ψ_B	1	1	0	-1	1
ϕ_B	1	1	0	-1	-1
ξ	1	1	0	0	-1

Integrate out TeV-scale Y to get EFT:

$$\mathcal{L} = \frac{y_{u_a d_b} y_{\psi d_c}}{M_Y^2} \epsilon_{ijk} \left(u_{R,a}^i d_{R,b}^j \right) \left(\psi_B d_{R,c}^k \right) - y_d \bar{\psi}_B \phi_B \xi + \text{h.c.}$$

Other Observables

Asymmetry given by:

$$Y_{\mathcal{B}} = \frac{n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}}{s} = 8.7 \times 10^{-11} \frac{\text{Br}(B \to \psi_{\mathcal{B}} \,\mathcal{B}_{\text{SM}})}{10^{-2}} \sum_{q=s,d} \alpha_q \, \frac{A_{SL}^q}{10^{-4}}$$

•
$$A_{SL}^q$$
: CP asymmetry in $\stackrel{(-)}{B}_q \to \ell^{\mp} + X$
Constrained by LHC, *B* factories

- ► Exotic *B* decays at *B* factories
- Indirect effects on B⁰ oscillation/CP violation e.g. φ^{d,s}_{1,2}, ΔM_{d,s}, ΔΓ_{d,s}
- ► Direct production of Y @ LHC

Modeling IND

▶ Amplitude written in terms of $N \rightarrow \pi, K$ form factors

$$\mathcal{A} \propto W_0(q^2) - i \, rac{q}{m_N} \, W_1(q^2)$$

• Calculated on the lattice at $q^2 = 0$, 1 GeV²

Yoo et. al.: PRD105, 074501 (2022)

▶ 3 choices of *udd* operator

$$(u_R d_R) d_R$$
, $(u_R d_R) s_R$, $(u_R s_R) d_R$

Parameter Space: π Channel

Joshua Berger

Can We Simulate?

- Hacked together simulation in GENIE v3.06
 Based on existing nucleon decay module
- Event generation of model points by request https://github.com/jberger7/Generator-IND
- ▶ Why GENIE?
 - Standard tool in ν experiment
 - Includes important nuclear effects
 - ► Get full kinetic energy distributions!
- Allowed meson FS: π , K, D^0