Reactor Antineutrino Oscillations and JUNO

5th Conference on Science at the Sanford Underground Research Facility May 14-17 2024 Roberto Mandujano rcmanduj@uci.edu University of California, Irvine On Behalf of the JUNO Collaboration

Reactors and Neutrinos

- Intense, pure, and cost-effective source of electron antineutrinos: ~10²⁰ $\bar{\nu}_e/s$ per GW_{th}
- Produced in beta decays: $n \rightarrow p + e^- + \bar{\nu}_e$
- Used for neutrino discovery by Reines and Cowan
- Today's talk will focus on experiments with commercial Low-Enriched Uranium reactors
 - Fissions come from ²³⁵U,²³⁹Pu,²⁴¹Pu,²³⁸U

Reactor $\bar{\nu}_e$ Detection

• Reactor $\bar{\nu}_e$ detected through Inverse Beta Decay (IBD) reaction

•
$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Positron (prompt) signal followed by neutron capture (delayed) typically on Gd (nGd), H (nH), or C (nC)
- Temporal and spatial coincidence of prompt and delayed signals is a powerful handle to extract reactor neutrino signal

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L,E) = 1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E}\right)$$

- Many avenues to explore oscillations with reactor neutrinos!
- Sensitive to $\begin{array}{c} \theta_{13}, \theta_{12}, \|\Delta m_{21}^2\|, \|\Delta m_{31}^2\|\\ \text{and the mass ordering} \end{array}$
- Independent from $heta_{23}, \delta_{CP}$

Note: Reactor neutrino experiments often report an ordering-independent effective mass splitting: $|\Delta m_{32}^2| = |\Delta m_{ee}^2| - \alpha \cos^2 \theta_{12} \Delta m_{21}^2$, $\alpha = +1, -1$ for NO, IO

Measuring θ_{13}

- O(10) ton liquid scintillator (LS) detectors at short (km) baselines
- Up to 8% disappearance effect
- Systematics control is key: near/far comparison cancels uncertainties in flux and correlated detection efficiencies

Measuring θ_{13}

CoSSURF 2024

- Multi-zone detectors lined with photomultiplier tubes (PMTs)
- Instrumented outer shields double as muon veto
- Mineral oil as additional shielding
- Middle LS volume serves as γ catcher
- Innermost volume comprised of Gd-doped LS
 - Gd improves IBD signal

water, mineral oil, LS, GdLS

Phys. Rev. Lett. 130, 161802 (2023)

- Latest results using neutron capture on Gd (nGd) with 3158 days of data
- Measure $\sin^2(2\theta_{13}), \Delta m^2_{32}$ from spectral distortion and relative rates between detectors

$$\sin^2(2\theta_{13}) = 0.0851 \pm 0.0024$$
$$\Delta m_{32}^2 = (2.466 \pm 0.060) \times 10^{-3} \,\text{eV}^2 \,(\text{NO})$$
$$\Delta m_{32}^2 = -(2.571 \pm 0.060) \times 10^{-3} \,\text{eV}^2 \,(\text{IO})$$

- Latest nGd results using 2900 day data set shown at NEUTRINO 2022
- Large reduction in statistical and systematic uncertainties from previous result

$$\frac{4000}{3000} \xrightarrow{\text{Preliminary}}_{1000} \xrightarrow{\text{P$$

$$\sin^{2}(2\theta_{13}) = 0.0892 \pm 0.0089$$
$$|\Delta m_{32}^{2}| = (2.68 \pm 0.14) \times 10^{-3} \text{ eV}^{2} \text{ (NO)}$$
$$|\Delta m_{32}^{2}| = (2.79 \pm 0.14) \times 10^{-3} \text{ eV}^{2} \text{ (IO)}$$

Double Chooz

CoSSURF 2024

Nature Phys. 16 (2020) 5, 558-564

- 818 live day data-set using total neutron capture
 - nGd +nH+nC
 - Control of detection systematics and increased volume (γ catcher)
- Slightly higher $\sin^2(2\theta_{13})$ w.r.t similar experiments
 - < 2σ difference

 $\sin^2(2\theta_{13}) = 0.105 \pm 0.014$

Present Picture

- θ_{13} measurement with reactor $\bar{\nu}_e$ will remain the most precise for years to come
 - Best known angle in PMNS matrix! (for now...)

Good sensitivity to Δm_{32}^2 , in agreement with accelerator experiments

JUNO Overview

- The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator neutrino detector, ~650 m underground in southern China
- 20 kton mass: the largest detector of its kind ever built
- Multi-purpose experiment with rich physics portfolio
- Main physics goals are neutrino mass ordering (NMO) determination and precision measurement of neutrino oscillation parameters

Detector Design

- 35.4 m diameter acrylic sphere filled with 20 kton of liquid scintillator (LS)
 - LS designed for high light yield and low attenuation
- 17,612 20" PMTs (LPMTs) and 25,600 3" PMTs (SPMTs)
 - ~78% photo-coverage
 - ~30% detection efficiency (LPMT)
- Instrumented outer water tank and top scintillator panels
- Unprecedented 3% energy resolution at 1 MeV

- JUNO-TAO (Taishan Antineutrino Detector) will be a satellite detector
 - 44 m from 4.6 GW_{th} reactor
 - ~1 ton GdLS fiducial volume
 - Instrumented with SiPM providing <2% at 1 MeV energy resolution and >90% photocoverage
 - Operates at -50°C
- Measure reactor antineutrino energy spectrum with excellent resolution
 - Remove possible model dependence from JUNO NMO measurement
 - Search for sterile neutrinos
 - Isotopic $\bar{\nu}_e$ rate and shape
 - Important inputs for experiments and nuclear databases

arXiv: 2005.08745

JUNO $\bar{\nu}_e$ Oscillations

- Observation of $\theta_{12}, \Delta m^2_{21}, \Delta m^2_{31}$ and θ_{13} driven oscillations
- Determination of NMO through interference effects in fine structure of oscillated spectrum (allowed by large θ_{13})
 - Precise energy spectrum reference from JUNO-TAO
 - Independent of δ_{CP} , octant of θ_{23}
 - Complementary to accelerator and atmospheric measurement (different baseline, energy, and technology)
 - Reach ~5σ in combination with other experiments (*PRD 101, 032006 (2019), Sci Rep 12, 5393 (2022)*)

Updated Sensitivities

- Recent sensitivity study with full treatment of systematics using best knowledge of detector response to date:
 - Updated number of reactors
 - Realistic simulation and veto efficiencies
 - Final detector overburden and location information
 - Spectral shape constraints from JUNO TAO included

Oscillation Parameters

	Δm_{21}^2	Δm_{31}^2	$\sin^2\theta_{12}$	$\sin^2\theta_{13}$
JUNO 100 days	0.8%	1%	1.9%	47.9%
JUNO 6 years	0.3%	0.2%	0.5%	12.1%
KamLAND	2.4%	-	-	_
T2K	-	2.6%	-	_
SNO+SK	-	_	4.5%	_
Daya Bay	_	_	_	3.4%

JUNO Relative Uncertainty vs. Leading Experiments

• Measurement of $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} to ~1% precision with O(100 days) data

- 6 years for order of magnitude improvement over existing constraints
- Precise tests of neutrino oscillations and U_{PMNS} unitarity (1%)

Construction Progress

Steel Support Structure finished

PMT and electronics installation ongoing!

R. Mandujano - UCI

Construction Progress

CoSSURF 2024

• Filling set to start this year!

Neutrinos from Near and Far

- Reactor antineutrinos have been key to neutrino science: and there are exciting prospects in the near future!
 - Discovery of non-zero θ_{13} performed with reactor $ar{
 u}_e$
 - Will be its most precise measurement for the foreseeable future
- JUNO is a next-generation, precision, multi-purpose experiment with a rich program in neutrino, astroparticle, and new physics searches
- Using its reactor $\bar{\nu}_e$ dataset:
 - NMO measurement to 3σ with about 6 years of data-taking
 - Sub-percent precision for $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} with as little as O(100) days of data
- Much progress has been done in construction and commissioning, with LS data-taking starting next year!

Thank you!

- Comprehensive calibration strategy
 - Gamma/neutron sources, cosmogenic ¹²B and UV laser
 - Multi-positional source deployment
- SPMTs serve as linear reference for LPMT nonlinearity
 - Operate in photon-counting mode for ~1-10 MeV
- Dual Calorimetry Calibration compares LPMT charge to SPMT charge under same source
 - Channel-wise LPMT charge vs. total SPMT charge
 - UV laser energies span region of interest
 - Gamma sources match time profile of neutrino (positron) signal
 - Absolute energy scale uncertainty <1%

JUNO-TAO Physics Reach

- With its short baseline, TAO has great potential in sterile oscillation searches
 - Sensitivity improved by virtual segmentation of detector

Systematics

- Updated treatment of systematics
 - Values for 6 year exposure shown
- Rate systematics mitigated by spectral shape constraint on normalization

Δm_{31}^2	1σ (%)	
Statistics	0.17	
Reactor:		
- Uncorrelated	< 0.01	
- Correlated	0.01	
- Reference spectrum	0.05	
- Spent Nuclear Fuel	< 0.01	
- Non-equilibrium	< 0.01	
Detection:		
- Efficiency	0.01	
- Energy resolution	< 0.01	
- Nonlinearity	0.04	
- Backgrounds	0.04	
Matter density	0.01	
All systematics	0.08	
Total	0.19	
	0	.0 0.1
		%

$\sin^2 \theta_{12}$	lσ (%)			
Statistics	0.34		1]
Reactor:			1	
- Uncorrelated	0.10			
- Correlated	0.27			
- Reference spectrum	0.09			
- Spent Nuclear Fuel	0.05			
- Non-equilibrium	0.10			
Detection:				
- Efficiency	0.23			
- Energy resolution	0.01			
- Nonlinearity	0.09			
- Backgrounds	0.20		(
Matter density	0.07			
All systematics	0.40			
Total	0.52			
	0	.0 0	.2 %	0.4

2		7
Δm_{21}^2	1σ (%)	
Statistics	0.16	
Reactor:		
- Uncorrelated	0.01	
- Correlated	0.03	
- Reference spectrum	0.07	
- Spent Nuclear Fuel	0.07	
- Non-equilibrium	0.14	
Detection:		
- Efficiency	0.02	
- Energy resolution	0.01	
- Nonlinearity	0.05	
- Backgrounds	0.18	
Matter density	0.01	
All systematics	0.27	
Total	0.32	
	0	0 02

$\sin^2 \theta_{13}$	1σ (%)	
Statistics	8.94	
Reactor:		
- Uncorrelated	2.53	
- Correlated	6.83	
- Reference spectrum	3.48	
- Spent Nuclear Fuel	1.55	
- Non-equilibrium	2.65	
Detection:		
- Efficiency	5.81	
- Energy resolution	0.39	
- Nonlinearity	2.09	
- Backgrounds	4.89	
Matter density	0.98	
All systematics	8.16	
Total	12.11	
		0 5 10

R. Mandujano - UCI

CoSSURF 2024

%