

Enhancing XENONnT's Sensitivity to $0\nu\beta\beta$ Decay with TextCNN

CoSSURF 2024

Min Zhong, UC San Diego

On behalf of the XENON collaboration

XENON Collaboration

instagram.com/xenon_experiment

twitter.com/xenonexperiment

Collaboration Meeting Sep. 2023, Paris

200+ Scientists

29 Institutions

LXe Time Projection Chambers

Energy Reconstruction From combining S1 and S2 signals

3D Position Reconstruction x-y from PMTs **light pattern**, **z** from **drift time**

Recoil Type Identification S2/S1 different for Electronic Recoils (ER) and Nuclear Recoils (NR)

Signals in Dual-phase Time Projection Chamber (TPC):

- Prompt scintillation light: S1
- Secondary scintillation proportional to drifted

electrons: S2

LXe Time Projection Chambers

Energy Reconstruction From combining S1 and S2 signals

3D Position Reconstruction x-y from PMTs **light pattern**, **z** from **drift time**

Recoil Type Identification S2/S1 different for Electronic Recoils (ER) and Nuclear Recoils (NR)

Electronic Recoils

Electrons, photons, neutrinos, (axions ...)

Signals **in Dual-phase** Time Projection Chamber (**TPC**):

- Prompt scintillation light: S1
- Secondary scintillation proportional to drifted electrons: S2

Nuclear Recoils

Neutrons, neutrinos via coherent scattering, WIMPs...

The XENONnT Experiment

Direct search for dark matter with **liquid xenon (LXe) TPC** deep underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy.

XENON10	XENON100	XENON1T	XENONnT	
25 kg	161 kg	3.2 t	8.5 t	
2005	2008	2016	2020	

8.5 t LXe (5.9 t active mass)
 TPC: 494 Photomultiplier Tubes (PMTs)
 Neutron veto, muon veto
 GXe/LXe purification system, Rn distillation column

The XENONnT Experiment

Direct search for dark matter with **liquid xenon (LXe) TPC** deep underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy.

XENON10	XENON100	XENON1T	XENONnT
25 kg	161 kg	3.2 t	8.5 t
2005	2008	2016	2020

$\textbf{XENON1T} \rightarrow \textbf{XENONnT}$

- x3 Larger target mass (x4 fiducial mass): lower material background, larger exposure
- > Additional LXe purification: e-lifetime: 0.65 ms \rightarrow ~15 ms
- > Radon distillation: ²²²Rn suppressed to < 1 μ Bq/kg
- Triggerless data acquisition
- > Open-source & faster processing software

8.5 t LXe (5.9 t active mass)
 TPC: 494 Photomultiplier Tubes (PMTs)
 Neutron veto, muon veto
 GXe/LXe purification system, Rn distillation column

XENON Physics Program

$0\nu\beta\beta$ Search with XENON1T

XENON1T ¹³⁶Xe $0\nu\beta\beta$ search

- > ~0.8% energy resolution at $Q_{\beta\beta}$
- \succ T^{0νββ}_{1/2} > 1.2 x 10²⁴ yr
- > Main limitation: material background γ -rays

Detector Material γ-rays

Dominant background in ROI

 $2\nu\beta\beta$ of ¹³⁶Xe

Continuous spectrum ends at $Q_{\beta\beta}$, subdominant

²¹⁴Bi from ²²²Rn emanation

TPC: Merged $\gamma + \beta$ signal from ²¹⁴Bi decay inside the active volume suppressed by ²¹⁴BiPo coincidence.

Shell: Decay of ²¹⁴Bi outside the active volume leads to additional γ -ray background.

8

$0\nu\beta\beta$ Search with XENONnT

XENONnT ¹³⁶Xe $0\nu\beta\beta$ search

- Subpercent energy resolution at $Q_{\beta\beta}$
- Larger fiducial mass (5.9t active Xe, 8.9% ¹³⁶Xe)
- Lower material background level
- Expecting comparable sensitivity to EXO-200

Normal hierarchy

10-3

 $m_{\text{lightest}} [eV/c^2]$

10⁻²

 10^{-3}

 10^{-4}

 10^{-1}

Tackle the Background with ML

Traditional Cut against Material γ -rays

- > Hypothetical $0\nu\beta\beta$ events mostly recorded as single-site (SS)
- > High energy γ -rays more likely to be multi-site (MS) events
- Powerful for rejecting events with multiple S2s

Tackle the Background with ML

Traditional Cut against Material γ -rays

- > Hypothetical $0\nu\beta\beta$ events mostly recorded as single-site (SS)
- > High energy γ -rays more likely to be multi-site (MS) events
- > Powerful for rejecting events with multiple S2s

How about merged S2s?

- Events with only one dominant S2 signal
- > Difficult to be recognized by traditional cuts

KamLAND-Zen:

Xenon-loaded liquid scintillator for ¹³⁶Xe $0\nu\beta\beta$ search World-leading limit on $0\nu\beta\beta$ half-life:

 $T_{1/2}^{0
uetaeta} > 2.3 \ {
m x} \ 10^{26} \ {
m yr}$

KamNet: Spatiotemporal Deep Neutral Network

- KamLAND-Zen data is spatiotemporal (3D series)
- Rotational symmetry and temporal symmetry utilized
- Attention mechanism introduced

Sensitivity Boost

20/35% sensitivity boost based on background modeling

? What can we do with XENONnT?

We don't have easily accessible spatiotemporal data

PMT signals are stored as 2D (hit patterns) and 1D (waveforms) data

TextCNN for 1D Time-series

- Feature Extractor: convolutional layers + activation layers + pooling layers + …
- Linear Classifier: gather features and make decision

TextCNN Performance

Trained with 0-4 MeV e^- / γ :

Uniform in energy and position

Outperforming traditional cuts

Rejecting > 60% background at 90% signal acceptance

Unique classification power

Rejecting > 40% background after traditional cuts

TextCNN Performance

Trained with 0-4 MeV e^- / γ :

Uniform in energy and position

Outperforming traditional cuts

Rejecting > 60% background at 90% signal acceptance

Unique classification power

Rejecting > 40% background after traditional cuts

The model is mostly looking at the rising / falling edges of the waveforms

Data-MC Matching w/ Augmentation

What is data augmentation?

- > Apply various transformations to the original data
- Increase the size and diversity of the dataset

Why do we need augmentation?

- Account the mismodeling of the MC
- Make the model more robust and adaptable

Data-MC Matching w/ Augmentation

What is data augmentation?

- Apply various transformations to the original data
- Increase the size and diversity of the dataset

Why do we need augmentation?

- Account the mismodeling of the MC
- Make the model more robust and adaptable

Results & $0\nu\beta\beta$ Sensitivity Boost

Matching Strategy

> e^{-1} : ¹³⁶Xe $2\nu\beta\beta$ (undistinguishable from $0\nu\beta\beta$) > γ : ²⁰⁸Tl (2614.5 keV γ peak) > $e^{-} + \gamma$: ²¹²Pb (from ²²⁰Rn calibration)

Preliminary Matching Result

Three event categories matched

 $\succ e^-, \gamma, e^- + \gamma$

Wide energy range matched

Min 300 keV, Max 2.6 MeV

Results & $0\nu\beta\beta$ Sensitivity Boost

Matching Strategy

> e^{-1} : ¹³⁶Xe $2\nu\beta\beta$ (undistinguishable from $0\nu\beta\beta$) > γ : ²⁰⁸Tl (2614.5 keV γ peak) > $e^{-} + \gamma$: ²¹²Pb (from ²²⁰Rn calibration)

Preliminary Matching Result

Three event categories matched

 $\succ e^-, \gamma, e^- + \gamma$

Wide energy range matched

Min 300 keV, Max 2.6 MeV

$\bigcirc 0\nu\beta\beta \text{ Sensitivity Boost}$

Very preliminary $^{136}\text{Xe}~0\nu\beta\beta$ sensitivity boost based on counting experiment assumption

Model	Background Suppression	Fiducial Volume Expansion	Actual Boost
TextCNN	28.4% Very Pre	liminary 27.5%	?
KamNet	2.2%	8.5%	20/35%

Phys.Rev.Lett. 130.151801, 2023

$0\nu\beta\beta$ with XENONnT

Good sensitivity to $0\nu\beta\beta$ decays

High energy resolution, low background and large fiducial mass

Material background γ -rays dominant at $Q_{\beta\beta}$

Traditional cuts can help but have limitation

TextCNN Model Development

Utilize waveforms to decode more information Great and unique classification power against background Promising $0\nu\beta\beta$ sensitivity boost

Stay tuned!

$0\nu\beta\beta$ with XENONnT

Good sensitivity to $0\nu\beta\beta$ decays

High energy resolution, low background and large fiducial mass

Material background γ -rays dominant at $Q_{\beta\beta}$

Traditional cuts can help but have limitation

TextCNN Model Development

Utilize waveforms to decode more information

Great and unique classification power against background Promising $0\nu\beta\beta$ sensitivity boost

Stay tuned!

What's the future?

- Future LXe dark matter experiment (eg. XLZD) has larger fiducial mass
- \checkmark Comparable sensitivity to that of $0\nu\beta\beta$ dedicated next-generation experiments
- Machine learning can boost it further!

TextCNN, Spatiotemporal Networks, ...

Thanks for listening!

Backup: Augmentation in NEXT

