Recent Neutrino Parameters Impact on the Effective Majorana Neutrino Mass in $0v\beta\beta$ Decay arXiv: 2404.19624

> Dongming Mei University of South Dakota

This work is sponsored by NSF PHY-2310027 and NSF OISE-174379

Double Beta Decay

Naturally Occurring only 35 isotopes Lifetime: ~10²¹ years

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

 $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

 $\Delta L = 2$

Physics Beyond the Standard Model

Lifetime > 10²⁶ years

Naturally Occurring only 35 isotopes

rd Number: What Can We Learn?

• Dirac or Majorana?

• Absolute Mass Scale

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(E_0, Z) \left|\frac{m_{\beta\beta}}{m_e}\right|^2 \left|M_f^{0\nu} - \left(\frac{g_A}{g_V}\right)^2 M_{GT}^{0\nu}\right|^2$$

 ν_{\parallel}

 $\bar{\nu}$

or

• Mass Hierarchy?

Neutrino Oscillation

Flavor neutrino is the mixing between mass eigenstates

$$|v_{\alpha}\rangle = \sum_{\alpha}^{3} U_{\alpha i} |v_{i}\rangle \qquad |v_{\alpha}\rangle \text{ is a neutrino with definite flavor } \alpha = e, \mu, ot \tau$$
$$|v_{i}\rangle = \sum_{i}^{3} U_{\alpha i}^{*} |v_{\alpha}\rangle \qquad |v_{i}\rangle \text{ is a neutrino with definite mass } m_{i} \text{ i} = 1, 2, ot 3$$

The asterisk (*) represents a complex conjugate

Most Recent Neutrino Parameters

$\Sigma = m_1 + m_2 + m_3$ Where $m_1, m_2, and m_3$ are the masses of three mass eigenstates

 $\Sigma = 0.099 \, eV \ or \ 0.102 \ eV \ from \ Cosmology \ 2022$

$$\begin{split} m_2^2 &- m_1^2 = 7.41^{+0.21}_{-0.20} \times 10^{-5} \text{ eV} & m_2^2 - m_1^2 = 7.41^{+0.21}_{-0.20} \times 10^{-5} \text{ eV} \\ m_3^2 &- m_2^2 = 2.437^{+0.028}_{-0.027} \times 10^{-3} \text{ eV} & m_3^2 - m_2^2 = -2.498^{+0.032}_{-0.025} \times 10^{-3} \text{ eV} \\ \theta_{12} &= 33.41^{+0.75}_{-0.72}; \ \theta_{13} &= 8.54^{+0.11}_{-0.12} & \theta_{12} &= 33.41^{+0.75}_{-0.72}; \ \theta_{13} &= 8.57^{+0.12}_{-0.11} \\ \theta_{23} &= 49.1^{+1.0}_{-1.3} & \theta_{23} &= 49.5^{+0.9}_{-1.2} \\ m_1 &< m_2 &< m_3 & m_1 &< m_2 \end{split}$$

Normal Mass Hierarchy - NH

Inverted Mass Hierarchy - IH

PDG, 2023

Sum of Masses Versus the Minimum Mass

Connection with Neutrinoless Double-Beta Decay

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(E_0, Z) \left|\frac{m_{\beta\beta}}{m_e}\right|^2 \left|M_f^{0\nu} - \left(\frac{g_A}{g_V}\right)^2 M_{GT}^{0\nu}\right|^2$$

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta}s_{13} \\ -c_{23}s_{12} - e^{i\delta}c_{12}s_{13}s_{23} & c_{12}c_{23} - e^{i\delta}s_{12}s_{13}s_{23} & c_{13}s_{23} \\ s_{12}s_{23} - e^{i\delta}c_{12}c_{23}s_{13} & -c_{12}s_{23} - e^{i\delta}c_{23}s_{12}s_{13} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \end{pmatrix}$$

$$7^{6}Ge$$

$$|m_{\beta\beta}| = |\sum_{i} m_{i} U_{\beta i}^{2}| = |m_{1}c_{12}^{2}c_{13}^{2}|e^{2i\alpha} + |m_{2}s_{12}^{2}c_{13}^{2}| + |m_{3}s_{13}^{2}|e^{2i\beta}|$$

Upper Bound and Lower Bound

$$\begin{split} m_{\beta\beta}^{NHUpper} & m_{2}\sin^{2}\theta_{12}\cos^{2}\theta_{13}\left[1+\sqrt{1-\frac{\Delta m_{21}^{2}}{m_{2}^{2}}}\cot^{2}\theta_{12}+\sqrt{1-\frac{\Delta m_{21}^{2}}{m_{2}^{2}}}+\frac{\Delta m_{31}^{2}}{m_{2}^{2}}\frac{\tan^{2}\theta_{13}}{\sin^{2}\theta_{12}}\right] (1) \\ = \\ m_{\beta\beta}^{NHLower(1)} & m_{2}\sin^{2}\theta_{12}\cos^{2}\theta_{13}\left[1-\sqrt{1-\frac{\Delta m_{21}^{2}}{m_{2}^{2}}}\cot^{2}\theta_{12}-\sqrt{1-\frac{\Delta m_{21}^{2}}{m_{2}^{2}}}+\frac{\Delta m_{31}^{2}}{m_{2}^{2}}\frac{\tan^{2}\theta_{13}}{\sin^{2}\theta_{12}}\right] (2) \\ = \\ m_{\beta\beta}^{NHLower(2)} & m_{2}\sin^{2}\theta_{12}\cos^{2}\theta_{13}\left[\sqrt{1-\frac{\Delta m_{21}^{2}}{m_{2}^{2}}}\cot^{2}\theta_{12}-1-\sqrt{1-\frac{\Delta m_{21}^{2}}{m_{2}^{2}}}+\frac{\Delta m_{31}^{2}}{m_{2}^{2}}\frac{\tan^{2}\theta_{13}}{\sin^{2}\theta_{12}}\right] (3) \\ = \end{split}$$

For the case of IH, $m_3 < m_1 < m_2$, (1) and (3) are used for the upper and lower bounds

Impact on Neutrinoless Double Beta Decay

Remarks:

- The planned ton-scale
 experiment will fully
 access the region of IH
- ~100 ton-scale will access
 NH region

Probable Region in the NH

Remarks:

In the case of NH, the probable region is quite narrow between $3 \times 10^{-4} < m_L < 2 \times 10^{-3}$

Non-Zero Minimum Neutrino Mass

Impact on the Sensitivity for Half-life Measurements

Remarks:

- Ton-scale experiments
 can fully access the region
 of IH
- 100 ton-scale
 experiments can fully
 access NH region
- The chance for the halflife beyond ~10³¹ years is small

Sensitivity for Future Ge-based Experiments

Effective Mass Versus Exposure

Summary

- Planned ton-scale experiment will fully explore IH – 10 meV
- Future 100-ton experiments are required to probe NH 1 meV
 - Required Background Index 1 event per kton per year in the region of interest
- The minimum neutrino mass is non-zero