

Nuclear Astrophysics Underground Status of CASPAR

Dan Robertson CASPAR & University of Notre Dame

CASPAR

Stellar Life Cycles & Nuclear Burning Regimes

S

N

А

Р

Opportunity: Time scales and location

Elemental Abundances – How Does This Affect Me?

S

N

Α

Р

Astrophysics Is Messy

"Real World" Examples

Solutions And Work Arounds

Increase reaction products

Increasing accelerated beam intensity Longer measurements

Improving target stability

Detection sensitivities & tricks

Higher efficiencies

Cleaner materials

Better discrimination

Background reduction

Cosmic radiation background Environmental decay background Beam induced background

International Community

4000 m.w.e

JUNA (China)

130 m.w.e

CASPAR (US)

A constant of the second of th

CASPAR Overview

Voltage range ~ 150 kV – 1.1 MV
Proton beam and alpha beam to target, 200 – 250 μA
25-degree, with 0-degree and "mass-2" ports
Extended, recirculating, windowless gas target & Solid target stations interchangeable
Graduate student, postdoc and faculty driven. No operators.

Backgrounds As The Hot Topic

CASPAR Solutions – Background Suppression

Other Options For Interference

Enhanced material purity Material assay Gaseous targets Simulation and testing

Detection Choices

TRE DAME

17

Process flow to ²²Ne as a neutron source for both weak and main s-process

 $^{14}N(\alpha,\gamma)^{18}F(\beta+\nu)^{18}O(\alpha,\gamma)^{22}Ne(\alpha,n)^{25}Mg$

- Within the Gamow window rate is dominated by 5 resonances at 767, 750, 662, 569 and 472 keV
- Ta₂¹⁸O₅ target (prepared via electrolysis),

- Alpha-capture with a positive Q-value competes with the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction
- Reaction rate is dominated by two resonances at 830 and 650 keV
- Ne-target implanted in tantalum @ UND

Upper limit of $\omega \gamma < 0.2 \ \mu eV$ obtained for the low energy resonance, determined relative to the 830 keV resonance strength obtained in this experiment.

$^{22}Ne(\alpha,n)^{25}Mg$ – Neutron Source

- ²²Ne(α ,n)²⁵Mg is a neutron source for weak and main s-process
- Regions of interest are centered on 830 keV resonance
- Using windowless recirculating gas target and He-3 detectors

- 16 He-3 filled counters
- Borated poly shielding
- Poly moderator
- Pros / Cons

Thomas Kadlecek, SDSMT

Ongoing Timeline

First CASPAR Campaign

Resulted in 6 projects that are now completed or the analysis is in progress

Second CASPAR Campaign

Upgraded passive shielding for y & n detection Better signal evaluation eg PSD for neutron and new gating for gammas Investigation of upper and lower voltage limits

Current Hibernation Mode

With Thanks To

This work was supported by the National Science Foundation (NSF) under Grants No. PHY-1713857, PHY-2011890, PHY-1614442, and PHY-1913746, and the Sanford Underground Research Facility (SURF) under Award Number DE-SC0020216.

