Introduction to Baryon Number Violation Searches

Linyan Wan, Fermilab CoSSURF 2024/05/15

- *B* conservation is not guaranteed by any fundamental symmetry.
- In Standard Model, *B* conservation is accidental.
- Predicted in Grand Unification Theories.
- *B* violation is an essential ingredient for baryogenesis.

- *B* conservation is not guaranteed by any fundamental symmetry.
- In Standard Model, *B* conservation is accidental.
- Predicted in Grand Unification Theories.
- *B* violation is an essential ingredient for baryogenesis.

The Standard Model

- *B* conservation is not guaranteed by any fundamental symmetry.
- In Standard Model, *B* conservation is accidental.
- Predicted in Grand Unification Theories.
- *B* violation is an essential ingredient for baryogenesis.

- *B* conservation is not guaranteed by any fundamental symmetry.
- In Standard Model, *B* conservation is accidental.
- Predicted in Grand Unification Theories.
- *B* violation is an essential ingredient for baryogenesis.

Andrei Sakharov

Baryon Number Violation? Not Yet...

No observation in any of these channels.

Baryon Number Violation? Not Yet...

Benchmark Mode: $p \rightarrow e^+ \pi^0$

2024 J. Phys. G: Nucl. Part. Phys. 51 033001

Lifetime limits [years]

Search Requirements

- Large statistics:
 - Large detector
 - Long exposure
- High efficiency:
 - Sensitive in subGeV energy range
- Minimum background

A Neutrino Experiment for BNV Search

- Large statistics:
 - 20 kton water
 - Data taking 1996-now
- High efficiency:
 - If above water Cherenkov threshold
- Minimum background
 - 1 km overburden + outer detector to reject cosmic rays
 - Only background: atmospheric neutrinos

A simulated $p \rightarrow e^+ \pi^0$ event at SK

 $p \rightarrow e^+ \pi^0$

- 2-3 reconstructed Cherenkov rings.
- All rings are electron-like.
- No Michel electrons. ullet
- For events with 3 rings, $85 < m_{\pi^0} < 185$ MeV.

Efficiency ~70%

Neutrino Interaction at GeV

- Main interactions:
 - (Quasi-)Elastic scattering
 - Resonant Meson Production

•
$$\bar{\nu}_e + p \rightarrow e^+ + n + \pi^0$$

• Deep inelastic scattering

Number of Events [/10 MeV/c] (Normalized to Unity) Free Proton 10⁻¹ S state P state Phys. Rev. D 102, 112011 (2020) **Correlated Decay** 1000 10⁻² **Conventional Region** 900 Total Momentum [MeV/*c*] $p \rightarrow e^+ \pi^0 MC$ 800 700 **Free Proton** 10^{-3} 600 Bound Proton 500 400 10-300 300 400 500 600 700 800 900 1000 100 200 0 Smearing from bound nucleons 200 Proton Momentum [MeV/c] 100 & final state interaction Number of Events [/10 MeV/c²] **Free Proton** 200 400 600 800 1000 S state (Normalized to Unity) P state Total Mass [MeV/ c^2] **Correlated Decay** Efficiency ~40% 300 400 500 600 700 800 900 1000 200 100 0

 $p \rightarrow e^+ \pi^0$

Phys. Rev. D 102, 112011 (2020)

Efficiency ~40%

 2.4×10^{34} years @90% CL 450 kton · year

Future Detectors: Hyper-Kamiokande

- Large volume
 - 8 x Super-Kamiokande
- Same detection technique, improved photon detector

Benchmark Mode: $p \rightarrow e^+ \pi^0$

2024 J. Phys. G: Nucl. Part. Phys. 51 033001

Lifetime limits [years]

p

Benchmark Mode: $p \rightarrow \nu K^+$

2024 J. Phys. G: Nucl. Part. Phys. 51 033001

Lifetime limits [years]

$p \rightarrow \nu K^+ \text{ at SK}$

Challenges: v is invisible, and the K^+ is below water Cherenkov threshold

Decay channel	Branching ratio
$K^+ o \mu^+ u$	65%
$K^+ o \pi^+ \pi^0$	21%

Phys. Rev. D 90, 072005 (2014)

Phys. Rev. D 90, 072005 (2014)

Future Detectors: JUNO

- Large statistics:
 - 20 kton liquid scintillator
- High efficiency:
 - MeV thresholds


```
Chinese Phys. C 47 113002 (2023)
```

Future Detectors: DUNE

- Large statistics:
 - 40 kton liquid argon
- High efficiency:
 - Topologically visible kaons in LArTPCs
 - Potential enhancement from de-excitation light

MicroBooNE Public Note - 1071

Benchmark Mode: $p \rightarrow \nu K^+$

2024 J. Phys. G: Nucl. Part. Phys. 51 033001

Lifetime limits [years]

Benchmark Mode: $n \rightarrow \overline{n}$

2024 J. Phys. G: Nucl. Part. Phys. 51 033001

Lifetime limits [years]

K.S. Babu, et al, PRD 87 115019 (2013)

Free Neutron Oscillation: ESS

- Proposed Two Stage Experiment at the European Spallation Source
- Phase 1 HIBEAM: Search for $n \rightarrow n'$
- Phase 2 NNBAR: Search for $n \rightarrow \overline{n}$
 - 1000 times better sensitivity than the latest free neutron search at ILL

Z.Phys.C 63 (1994) 409-416

Bound Neutron Oscillation

- Suppressed by nuclear potential
- Multiple meson production from the annihilation after $n \rightarrow \overline{n}$ oscillation, mostly pions.

Neutron Oscillation at SK

Run 999999 Sub 0 Event 231 19-10-16:04:36:05 Inner: 2169 hits, 4505 pe Outer: 5 hits, 5 pe Trigger: 0x02 D wall: 508.0 cm Evis: 475.6 MeV

Charge (pe)

A simulated $\overline{n}p$ annihilation producing 6 pions. 5 rings were reconstructed.

A simulated atmospheric neutrino event. Neutral current deep inelastic scattering.

Quantified Features

Signals have more rings and are more isotropic. Backgrounds have a wider range of kinetics, and fewer rings.

These features are quantified as variables concerning:

- Kinematics
- Number of rings
- Isotropy
- PID

Phys.Rev.D 103 (2021) 1, 012008

Quantified Features

Phys.Rev.D 103 (2021) 1, 012008

Signals have more rings and are more isotropic. Backgrounds have a wider range of kinetics, and less rings.

These features are quantified as variables concerning:

- Kinematics
- Number of rings
- Isotropy
- PID

Future Detectors: DUNE

- Large statistics:
 - 40 kton liquid argon
- High efficiency:
 - Low threshold for pions
- Challenge:
 - Smeared kinematics from Fermi motion & final state interaction

- Baryon Number Violation searches are highly motivated.
- There are active searches in many modes, especially the benchmark modes $p \rightarrow e^+\pi^0$, $p \rightarrow \nu K^+$, and $n \rightarrow \overline{n}$. No observation yet.
- Future searches with next-generation large neutrino detectors are promising.