

# The future of the dark matter search with DarkSide-20k

Dr. Michela Lai on behalf of DarkSide-20k Collaboration



South Dakota Mines campus, May 14-16, 2024











Phys. Rev. D 100, 022004 (2019)







aon

#### DEAP-3600 @SNOLAB

DarkSide-50 @LNGS







Phys. Rev. D 100, 022004 (2019)



#### DEAP-3600 @SNOLAB DarkSide-50 @LNGS





Phys. Rev. D 100, 022004 (2019)





#### DEAP-3600 @SNOLAB DarkSide-50 @LNGS



## What we learn from DEAP-3600



#### What we learn from DEAP-3600







#### What we learn from DEAP-3600







#### What we learn from DarkSide-50



#### What we learn from DarkSide-50



#### What we learn from DarkSide-50

Unique sensitivity to GeV DM!



Physical Review D 107, 063001 (2023)























#### TPC: Active (fiducial) UAr mass: 49.7(20.2) tonnes



#### TPC: Active (fiducial) UAr mass: 49.7(20.2) tonnes



#### TPC: Active (fiducial) UAr mass: 49.7(20.2) tonnes





## Neutron rejection thanks to (n,y)



#### **R&D** for the Outer Veto



#### **R&D** for the Outer Veto



Reflectance Effects From LAr Exposure Characterization Tool



#### **R&D** for the Outer Veto



Apparatus for Researching Argon for New Detector Designs for Exciting Experiments

Reflectance Effects From LAr Exposure Characterization Tool



















0.966 -



0.966 -



\_\_\_\_0.966

2009: found low activity UAr at Southwest Colorado CO<sub>2</sub> wells



2009: found low activity UAr at Southwest Colorado CO<sub>2</sub> wells





2009: found low activity UAr at Southwest Colorado CO<sub>2</sub> wells

#### Estimated extraction rate: 250 kg/day







Expected purity from Urania: 99.99%

Need a factor 10<sup>3</sup> more!

Expected purity from Urania: 99.99%

Seruci-1: 350 m tall

Need a factor 10<sup>3</sup> more!



Expected purity from Urania: 99.99%

Seruci-1: 350 m tall

#### Need a factor 10<sup>3</sup> more!







DArT in ArDM, at Laboratorio Subterraneo De Canfranc (LSC, Spain, 1400 m.w.e.)



DArT in ArDM, at Laboratorio Subterraneo De Canfranc (LSC, Spain, 1400 m.w.e.)





DArT in ArDM, at Laboratorio Subterraneo De Canfranc (LSC, Spain, 1400 m.w.e.)





















#### Expected sensitivity to WIMPs



Snowmass 2021, ArXiV 2203.08084

#### Expected sensitivity to WIMPs



Snowmass 2021, ArXiV 2203.08084



|                                                               | DarkSide-20k | Argo   |
|---------------------------------------------------------------|--------------|--------|
| $11-M_{\odot}$ SN- $\nu s$                                    | 181.4        | 1396.6 |
| $27\text{-}\mathrm{M}_\odot~\mathrm{SN}\text{-}\nu\mathrm{s}$ | 336.5        | 2591.6 |
| $^{39}\mathrm{Ar}$                                            | 4.3          | 33.8   |
| external background                                           | 1.8          | 8.8    |
| single-electrons                                              | 0.7          | 5.1    |

JCAP 03 (2021) 043



|                                                                 | DarkSide-20k | Argo   |
|-----------------------------------------------------------------|--------------|--------|
| $11\text{-}\mathrm{M}_\odot~\mathrm{SN}\text{-}\nu\mathrm{s}$   | 181.4        | 1396.6 |
| $27\text{-}\mathrm{M}_{\odot}~\mathrm{SN}\text{-}\nu\mathrm{s}$ | 336.5        | 2591.6 |
| $^{39}\mathrm{Ar}$                                              | 4.3          | 33.8   |
| external background                                             | 1.8          | 8.8    |
| single-electrons                                                | 0.7          | 5.1    |





|                                                                 | DarkSide-20k | Argo   |
|-----------------------------------------------------------------|--------------|--------|
| $11-M_{\odot}$ SN- $\nu s$                                      | 181.4        | 1396.6 |
| $27\text{-}\mathrm{M}_{\odot}~\mathrm{SN}\text{-}\nu\mathrm{s}$ | 336.5        | 2591.6 |
| $^{39}\mathrm{Ar}$                                              | 4.3          | 33.8   |
| external background                                             | 1.8          | 8.8    |
| single-electrons                                                | 0.7          | 5.1    |



## Side project: DarkSide-LowMass



## Side project: DarkSide-LowMass

## Designed to reach the neutrino floor with 1 tonne year exposure



## Side project: 3DII Scanner



#### Side project: 3DII Scanner







#### Side project: 3DII Scanner







Time-of-Flight PET scanner Total body design

High sensitivity allow for low dose or ultra-fast scanning time!

PoS EPS-HEP2021 (2022) 778

## Take home from this talk

DarkSide-20k is the first experiment from GADMC

Designed to be instrumental background free

Unique sensitivity in argon to WIMPs and GeV-scale candidates

Contribution to the Supernova Early Warning System 2.0







## Backgrounds

Main contaminant, rejected with PSD: 39-Argon beta decays (Q = 565 keV)

Produced in the atmosphere mainly by neutron capture on 40-Argon, 40Ar(n,2n)39Ar

## Most precise measurement of its activity in DEAP-3600!

| Measurement           | Specific activity [Bq/kgatmAr                 |  |
|-----------------------|-----------------------------------------------|--|
| WARP [15]             | $1.01 \pm 0.02_{\rm stat} \pm 0.08_{\rm sys}$ |  |
| ArDM [16]             | $0.95 \pm 0.05$                               |  |
| DEAP-3600 (this work) | $0.964 \pm 0.001_{stat} \pm 0.024_{sys}$      |  |



$$S_{\text{Ar39}} = \frac{N}{T_{\text{live}} \cdot m_{LAr}}$$

$$m_{LAr} = (3269 \pm 24)$$

Eur.Phys.J.C 83 (2023) 7, 642

#### PSD





| Parameter                                                           |      |
|---------------------------------------------------------------------|------|
| Total number of readout channels in TPC detector                    | 2112 |
| Total number of readout channels for inner Veto detector            | 480  |
| Total number of readout channels for outer Veto detector            | 128  |
| Minimum number of digitizer boards for TPC readout                  | 36   |
| Minimum number of digitizer boards for inner and outer Veto readout | 12   |