

Latest results of the PandaX-4T experiment

Zhicheng Qian Shanghai Jiao Tong University

On behalf of PandaX Collaboration May 15th, 2024

Outline

- Brief introduction of PandaX
- Current status of PandaX-4T
- Luminance of dark matter
- Towards to sub-GeV dark matter
 - lower threshold (S2-only)
 - Migdal effect
- Multi-physics targets
 - ⁸B CEvNS
 - ¹³⁶Xe $2\nu\beta\beta$
 - ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$

Brief introduction of PandaX

CNNC 雅砻江水电

SINAD

PandaX: Particle and Astrophysical Xenon

Brief introduction of PandaX

- Increasing the detector sensitive target volume
- Lowering radioactive background

Outline

- Brief introduction of PandaX
- Current status of PandaX-4T
- Luminance of dark matter
- Towards to sub-GeV dark matter
 - lower threshold (ionization-only)
 - Migdal effect
- Multi-physics targets
 - ⁸B CEvNS
 - ¹³⁶Xe $2\nu\beta\beta$
 - ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$

Status of PandaX-4T detector

Status of Run 1 WIMP analysis

2020/11	Commissioning (Run 0)
2021/04	95 days
2021/07	Tritium removal
2021/10	xenon distillation, gas flushing, etc
2021/11	Physics run (<mark>Run 1</mark>)
2022/05	164 days
2022/09	CJPL B2 hall renovation
2023/12	xenon recuperation, detector upgrade
Current Status	Resuming physics data-taking

Current status of PandaX-4T data analysis

- Result of commissioning • run (Run 0) has been published in 2021
- Run1 data is currently under analysis
- A combined analysis of run0 and run1

• Tritium, Pb-214, and Kr-85 are the major compositions

Current status: Run-1 Data Analysis

Tritium background

4.0

- excess of low electron-recoil energy
- S1 fitting (keep S2 blind)

Significant reduction from Run0 to Run1

0.0 Preliminar. 3.5 3.5 Preliminary 3.0 3.0 Counts / tonne / day 0.10 0.15 0.10 0.05 2.5 2.5 2.0 2.0 1.5 .5 1.0 -1.0tritium -10.50.5 0.00 0.0 0.050 100 21-03-01 21-04-0 22-05-01 21-02-01 22-03-01 21-12-01 22-01-01 22-04-01 22-02-01 S1 [PE] Date Run0 Run1

Pb-214 background

- Pb-214 is a daughter nuclei of Rn-222
- Select Rn-222 alpha events
- Rn-222 level varies with running condition

Rn-222 level	[µBq/kg]
Run 0	7.07 ± 0.02(stat.) ± 0.23(sys.)
Run 1	8.67 ± 0.01(stat.) ± 0.27(sys.)

⁸⁵Kr 10.756y

beta-gamma coincidence selection

0.437% _Q₈=173keV

99.563%

Q_e=687keV

⁵¹⁴ ^{85m}Rb 1.015µs

Kr/Xe	[ppt]
Run 0	0.5 ± 0.3
Run 1	0.9 ± 0.3

Current status: Run-1 Data Analysis

0.5

 $\log_{10}(N_e/N_{ph})$

- ER events, whose S2 is "eaten" by the surface
- Estimate the radial distribution by ²¹⁰Po events
- Good consistency with data outside blind region

Outline

- Brief introduction of PandaX
- Current status of PandaX-4T
- Luminance of dark matter
- Towards to sub-GeV dark matter
 - lower threshold (ionization-only)
 - Migdal effect
- Multi-physics targets
 - ⁸B CEvNS
 - ¹³⁶Xe $2\nu\beta\beta$
 - ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$

How dark is dark matter?

- Electromagnetic effect

higher-order loop-level

Luminance of Dark Matter

- Possible residual weak EM properties
- Coupling with photons

EFT

tree-level

Luminance of Dark Matter

- First experimental constraint on DM charge radius
 - 4 orders of magnitude smaller than neutrino
- Other EM properties
 - Up to 3 10 times improvement

Table 1 | Comparison of electromagnetic properties

	Dark matter	Neutrino	Neutron
Charge radius (fm²)	<1.9×10 ⁻¹⁰	(−2.1,3.3)×10 ^{-6 a}	–0.1155 °
Millicharge (e)	<2.6×10 ⁻¹¹	<4×10 ^{-35 a}	(-2±8)×10 ^{-22 a}
Magnetic dipole ($\mu_{\rm B}$)	<4.8×10 ⁻¹⁰	<2.8×10 ^{-11 a}	-1×10 ^{-3 a}
Electric dipole (ecm)	<1.2×10 ⁻²³	<2×10 ^{-21 b}	<1.8×10 ^{-26 a}
Anapole (cm²)	<1.6×10 ⁻³³	roughly 10 ^{-34 c}	roughly 10 ^{-28 d}

X. Ning et al. Nature 618 (2023)

Outline

- Brief introduction of PandaX
- Current status of PandaX-4T
- Luminance of dark matter
- Towards to sub-GeV dark matter
 - lower threshold (ionization-only)
 - Migdal effect
- Multi-physics targets
 - ⁸B CEvNS
 - ¹³⁶Xe $2\nu\beta\beta$
 - ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$

Generally very weak signals from sub-GeV DM

Ionization-only: no scintillation signal requirement

ROI S2 [60, 200]PE: threshold down to ~100 eV (from ~1 keV)

Sub-GeV DM: Lower threshold (Ionization-only

Tight quality cuts on the ionization signal

• Key challenge: background components

- No full picture in previous xenon-based experiments
- Conservative results only

Sub-GeV DM: Lower threshold (Ionization-only

Ionization-only Data of PandaX-4T

- First complete understanding of all the main background
 - Micro-discharging (MD)

Small charge, strong run-condition dependence

Cathode activity

➤Large charge, large pulse-shape width

- Blind analysis of 0.55 tonne-year exposure
 - 105 events
 - Best-fit background: 95.8 ± 11.3 events

– DM-electron interaction with heavy mediator, 2×10^{-41} cm²

Sub-GeV DM: Migdal Effect

NR-induced ER signals by the Migdal effect ullet

DM-nucleon interaction with a dark mediator •

$$\frac{dR}{dE_{\rm NR}} = \sigma|_{q^2=0} \frac{A^2}{\mu_p^2} \frac{m_{\phi}^4}{(m_{\phi}^2 + q^2)^2} F^2(q^2) \times \frac{\rho}{2m_{\chi}} \int_{v \ge v_{\rm min}} \frac{f(v)}{v} \int_{v \ge v_{\rm min}} \frac{f(v)}{v} d^3v \xrightarrow[v]{v} \frac{\rho}{v_{e} v_{e}} \int_{v_{e} v_{e}} \frac{f(v)}{v_{e} v_{e}} \frac{f(v)}{v_{e}} \frac{f(v)}{v_{e}} \frac{f(v)}{v_{e} v_{e}} \frac{f(v)}{v_{e}} \frac{f(v)}{v_{e} v_{e}} \frac{f(v)}{v_{$$

Sub-GeV DM: Migdal Effect

- With ionization-only data + Migdal effect, set most stringent constraints
 - DM-nucleon interaction with dark mediator, for DM mass [30 MeV, 2 GeV]
 - enhancing the potential for low-mass DM detection

Assume dark mediator is a dark photon

- Rule out significant parameter space of such thermal relic dark-matter model
- Complementary with future experiment (like DarkSHINE)

D. Huang et al. **PRL** 131, 191002 (2023)

Outline

⁸B CEvNS

- Blind analysis: 0.48 ton-year data
- Major challenge: Accidental background
- A multi-variate (BDT) algorithm trained to suppress AC background
- Leading constraint on ⁸B neutrino flux through CEvNS
- Assuming a nominal ⁸B background, set strongest constraints on light WIMP of 3 -9 GeV

W. Ma et al. PRL 130, 021802 (2023)

¹³⁶Xe double-beta decay

 Neutrinoless double-beta decay (0vββ) Golden channel for Majorana neutrino searches

- PandaX-4T: First natural xenon measurement with a dark matter detector (2vββ measurement)
- Consistent with ¹³⁶Xe-enriched experiments.

Research Vol 2022, 9798721 (2022)

¹³⁴Xe double-beta decay

¹³⁴Ba

¹³⁴Xe

- Next promising discovery of $2\nu\beta\beta$ decay
 - natural abundance 10.4%
 - 2vbb $T_{1/2}\,\,{}^{\sim}10^{24}$ years, $\,Q_{bb}\,\,0.83$ MeV
- Extended range: 200-1000 keV
- Energy resolution @ Q-value : σ/E=2.4%
- Single-site (SS) and multi-site (MS) discrimination

E_{max}=825.8 keV

¹³⁴Xe DBD measurements

- 95 live-days with 656 kg natural xenon
 - $-2\nu\beta\beta$: 10±269(stat.)±680(syst.)
 - $-0\nu\beta\beta$: 105±48(stat.)±38(syst.)

- 90%CL limits on half-life
 - $2\nu\beta\beta$: surpasses the existing limit by a factor of **32**
 - $0\nu\beta\beta$: **2.7** times stronger than the previous best result

10.1103/PhysRevLett.132.152502

- PandaX-4T is one of the new generation multi-tonne xenon experiments
- Run 1 data is under analysis
- Run 2 data-taking will start soon
- Intense searches for various types of physics, including DMs and neutrinos

Thanks

Backup

PandaX-4T Search for ⁸B CEvNS

- To enhance sensitivity on ⁸B (like a 6 GeV WIMP), need to lower the selection threshold (S1↓, S2 ↓)
- Major challenge: Accidental background (AC, non-physical S1 and S2 randomly paired)
- Blind analysis: 0.48 ton-year data, excluding data with an increase in noise rate (micro-discharge)

Constraints on ⁸B neutrino

- A multi-variate (BDT) algorithm trained to suppress AC background
 - Some downward fluctuation

ER+NR+AC	8B	Total prediction	Unblind data
1.46	1.42	2.88	(1)
0.04	0.29	0.33	0

ROI (BDT applied)

- Leading constraint on ⁸B neutrino flux through CEvNS
- Assuming a nominal ⁸B background, set strongest constraints on light WIMP of 3 -10 GeV