Overview of Neutrinoless Double Beta Decay

Krishan Mistry

South Dakota Mines campus, May 14-16, 2024

May 15 2024

krishan.mistry@uta.edu

How did the Universe come to be?

- Standard Model is our best theory but it has some shortfalls
- Neutrinos are one of the least understood particles in the SM and may give some clues

ν 's have mass and it's really small!

- Standard Model includes massless neutrinos
- Discovery of neutrino oscillations means they have mass
 - → Significantly smaller scale to the regular fermions
- Fine-tuning of the SM, new mass mechanism, new physics?

3

Adding a mass term

• If we include mass mechanism like the other fermions, we add a right-handed (but sterile) neutrino:

Yukawa coupling

 $-L_D = m_D(\overline{\nu_L}\nu_R + \overline{\nu_R}\nu_L),$

$$m_D = y v / \sqrt{2}$$

Expectation value of Higgs after EW symmetry breaking

• Yukawa coupling constant has to be extremely small (~10⁻¹²)

→ Fine-tuning and seems unnatural

• Doesn't get us any closer to solving any of the big questions

4

Rewind History: Fermi Beta Decay

• Fermi's theory of beta decay (1930s) was first developed assuming a point-like interaction between fermions

- We later found out that the mediator bosons were at much higher energy scale than the MeV scale energies probed
- Fermi's description was just a low-energy manifestation of the Standard Model
- Electroweak interactions at a higher physics scale

- Term has one function: makes Majorana neutrinos with mass suppressed by new physics scale E_{new}
- Also makes the theory non-renormalizable implying there must be something else at high scale too

The Majorana Neutrino

- Ettore Majorana realized for neutral fermions you can impose the condition: $\nu^{c} = \nu$
 - Neutrino is the only fermion that you can impose this condition

Behaves like matter

Behaves like antimatter

• A Majorana neutrino introduces processes that violates lepton number by two units

7

- Definite mass states of Dirac + right-handed Majorana mass results in a left-handed Majorana neutrino of mass m_D^2/m_R \rightarrow We have a more natural way to explain the neutrino mass
- Integration of the heavy field out below the mass scale $m_{R}\,$ returns the Weinberg operator

Leptogenesis Fukugita and Yanagida, Phys, Lett., B174:45,1986

- Introduce a heavy Majorana neutrino (typically around GUT scale)
 - \rightarrow Decays to leptons+Higgs: $l_{\alpha}\phi$ and $\overline{l_{\alpha}}\phi$
 - → If rate of interaction is slower than universe expansion, we depart from thermal equilibrium
 - \rightarrow We can drive one decay process more than the other creating LNV
- Sphaleron process then generates the baryon asymmetry from LNV
- Sakharov conditions to explain antimatter-matter asymmetry: BNV, BSM CPV, thermal equilibrium

In a nutshell, Majorana neutrinos:

- 1. Violate lepton number conservation
- 2. Neither matter or antimatter, but something else (Majorana fermion)
- 3. The SM with a Majorana term is non-renormalizable → SM is definitely a low-energy effective field theory
- 4. There are other mass generation mechanisms beyond the Higgs
- 5. Majorana neutrinos are a prediction of Leptogenesis to explain the antimatter-matter asymmetry

Double Beta decay $(2\nu\beta\beta)$

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu_e}$

- A known (and measured) SM process
- Even-even nuclei are more stable due to the pairing-force
- Transition is mostly to ground state
 - → Excited states are suppressed by phase-space
- Second order weak process
 → Half-lives ~10¹⁹-10²¹ yr

Neutrinoless Double Beta decay $(0\nu\beta\beta)$

- Majorana neutrinos annihilate giving almost all the energy to the electrons
 - → Cannot happen for Dirac neutrino

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

$$T_{1/2} = \left[\frac{\mathbf{G} \times |M(g_A)|^2 \times m_{\beta\beta}^2 / \mathrm{m}_{\mathrm{e}}^2 \right]^{-1}$$

Neutrinoless Double Beta decay $(0\nu\beta\beta)$

- Majorana neutrinos annihilate giving almost all the energy to the electrons
 - → Cannot happen for Dirac neutrino

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Phase Space Factor: G

- Factor accounts for the atomic physics relating to the emitted electrons
- Depends on the Q⁵ and Z of the isotope
- Can be calculated with reasonable accuracy
 - → Need good accurate description of the Coulomb field on the decay electron wave-functions

Nuclear Matrix Elements (NME): |M²|

- Accounts for the structure of the initial and final states of the nucleus
 - → Challenging and is one of the largest sources of theoretical uncertainty

Nuclear Matrix Elements (NME): |M²|

- Phenomenological nuclear models have variability, each with different physics approaches
 - → Lack of constraining data
 - → Spread is dependent on isotope

Nuclear Matrix Elements (NME): |M²|

- Phenomenological nuclear models have variability, each with different physics approaches
 - → Lack of constraining data

Some clustering of pheno predictions towards a central value

Numbe

¹³⁶Xe

Recent Ab-initio Calculations

- Recent Ab-initio calculations tend to reduce the NME with reduced uncertainty
 - \rightarrow Better control of g_A quenching and short-range contributions

UNIVERSITY OF TEXAS 🛠 ARLINGTON

- Refinements are still being made to the calculations e.g. higher order terms (IMSRG(3))
- Inverted hierarchy in non-degenerate region may not have been probed yet with current ab-initio estimates

18

K Mistry

$m_{\beta\beta}$ in the minimal mechanism

Minimal mechanism: exchange of light Majorana neutrinos

$m_{\beta\beta}$ in the minimal mechanism

Minimal mechanism: exchange of light Majorana neutrinos

$m_{\beta\beta}$ in the minimal mechanism

- NO and IO have different lightest neutrino mass
- Thickness to bands due to uncertainty on phases
- Smallest value of $m_{\beta\beta}$ in IO is ~20meV

Black Box Theorem (Schechter-Valle)

22

K Mistrv

- Light Majorana exchange may induce $0\nu\beta\beta$ and a give source of LNV
 - → It may not be the only mechanism driving the process
- Black-box theorem states that for any possible source of LNV that causes $0\nu\beta\beta$, we can draw a Feynman diagram enclosing this new physics
 - \rightarrow We still learn neutrinos are Majorana from observing $0\nu\beta\beta$

UNIVERSITY OF TEXAS 🛠 ARLINGTON

Decay Rate with higher dim operators

 More general form of the decay rate accounting for LNV physics in an EFT framework

• Odd operators Λ provide sources of LNV $M_W \simeq 80 \text{ GeV}$

• Higher order operators can also drive the rate of $0\nu\beta\beta$!

Scholer, O., de Vries, J. & Gráf, L. J. High Energ. Phys. 2023, 43 (2023).

UNIVERSITY OF TEXAS 🔀 ARLINGTON

K Mistry 23

Decay Rate with higher dim operators

• More general form of the decay rate accounting for LNV physics in an EFT framework: "Master Formula"

$$T_{1/2} = \left[g_A^4 \sum_k \frac{G_{0k}}{f} |\mathcal{A}_k(\{C_i\})|^2 \right]^{-1}$$

Phase-space factor

Sub-amplitudes that depend on:

- NME
- low-energy constants e.g. g_{v}^{NN}
- Wilson Coefficients (*C_i*)

Class	Op. Name	Code Label	Op. Structure	Half-Life Group	SMEFT Dim.
Dim 3					
Ψ^2	$\mathcal{O}_{m_{etaeta}}$	m_bb	$-rac{1}{2}m_{ee}\overline{ u_{L,e}^C} u_{L,e}$	m_{etaeta}	5
Dim 6					
	$\mathcal{O}_{SL}^{(6)}$	SL(6)	$\left[\overline{u_R}d_L\right]\left[\overline{e_L}\nu_L^C ight]$	$C_{S}^{(6)}$	7
Ψ^4	$\mathcal{O}^{(6)}_{SR}$	SR(6)	$\left[\overline{u_L}d_R ight]\left[\overline{e_L} u_L^C ight]$	$C_{S}^{(6)}$	7
	$\mathcal{O}_{VL}^{(6)}$	VL(6)	$ig[\overline{u_L}\gamma^\mu d_Lig]ig[\overline{e_R}\gamma_\mu u_L^Cig]$	$C_{VL}^{(6)}$	7
	$\mathcal{O}_{VR}^{(6)}$	VR(6)	$ig[\overline{u_R}\gamma^\mu d_Rig]ig[\overline{e_R}\gamma_\mu u_L^Cig]$	$C_{VR}^{(6)}$	7
	$\mathcal{O}_T^{(6)}$	T(6)	$\left[\overline{u_L}\sigma^{\mu\nu}d_R\right]\left[\overline{e_L}\sigma_{\mu\nu}\nu_L^C\right]$	$C_T^{(6)}$	7
Dim 7					
$\Psi^4\partial$	VL(7)	$\mathcal{O}_{VL}^{(7)}$	$\left[\overline{u_L}\gamma^{\mu}d_L ight]\left[\overline{e_L}\overleftrightarrow{\partial}_{\mu} u_L^C ight]$	$C_{V}^{(7)}$	7
	$\mathcal{O}_{VR}^{(7)}$	VR(7)	$\left[\overline{u_R}\gamma^\mu d_R ight]\left[\overline{e_L}\overleftrightarrow{\partial}_\mu u_L^C ight]$	$C_V^{(7)}$	7

Testing EFT Models

- Electron energy and angular kinematics can be different for your model
- If your detector can resolve the electron tracks, you can tell the difference!

15 May 2024

UNIVERSITY OF TEXAS 🔆 ARLINGTON

Testing EFT Models

- Electron energy and angular kinematics can be different for your model
- If your detector can resolve the electron tracks, you can tell the difference! e.g. NEXT! Figure made with $\nu \text{DoBE} \rightarrow \text{generator}$

I work on this, so it gets a slide :-)

15 May 2024

UNIVERSITY OF TEXAS 📩 ARLINGTON

26 **K** Mistry

Summary <

- $0 \nu \beta \beta$ is the most sensitive way to to probe the Majorana nature of the neutrino
- Majorana neutrinos provide a more natural way to explain the lightness of the neutrino mass, and are a prediction of theories such as leptogenesis
- Significant new theory efforts in the estimation of nuclear matrix elements with uncertainties, including recent ab-initio efforts
- Rich source of lepton number violating physics that could drive $0\nu\beta\beta$ beyond light-Majorana exchange