Overview of the DUNE Phase-II Program

Sowjanya Gollapinni, LANL (On behalf of the DUNE Collaboration)

Conference on Science at the Sanford Underground Research Facility (CoSSURF) SD Mines, May 16, 2024

The Deep Underground Neutrino Experiment (DUNE)

- Underground Research Facility (SURF)
- A capable near detector at Fermilab comprising of multiple technologies
- Far and Near site facilities and beam provided by the Long Baseline Neutrino Facility (LBNF)
- **Rich physics program:** Charge-Parity (CP) Violation, mass ordering, precision measurement of oscillation parameters, neutrino astrophysics, and Beyond the Standard Model (BSM) physics

A massive (70-kt total mass liquid argon equivalent) far detector a mile underground at Sanford

Underground Facility at SURF

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 3

- The DUNE far detector will be located a mile underground at SURF
- Excavation of the underground spaces began in 2021
- Some 800,000 tonnes of rock have been excavated and transported to the surface.
- As of January 2024, excavation of the massive underground caverns at SURF complete!

DUNE will be Built in Two Phases

Near Detector (ND)

Parameter	Phase-I	Phase-II	Impact
FD mass	20 kt fiducial	40 kt fiducial	FD statistics
Beam power	up to $1.2 \ \mathrm{MW}$	>2 MW	FD statistics
ND configuration	ND-LAr, TMS, SAND	ND-LAr, ND-GAr, SAND	Systematics

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 4

Far Detector (FD)

LArTPC: Liquid Argon Time Projection Chamber **ND-LAr:** Liquid argon-based ND *TMS: Temporary Muon Spectrometer* SAND: System for on-axis ND *MCND: More Capable ND ND-GAr: Gaseous argon-based ND* **PRISM:** movable ND capability for off-axis beam measurements **PIP-II:** Proton Improvement Plan-II **ACE:** Accelerator Complex Evolution at Fermilab

*Non-Argon options currently under consideration for Phase-II near and far detectors not listed

Accelerator Upgrades: PIP-II and ACE

PIP-II

- New PIP-II linac (to be completed in 2029) provides beam for injection into Booster at energy increased to 800 MeV from present 400 MeV
- Proton flux at 8 GeV increases 2 times resulting in beam power from Main Injector up to 1.2 MW

ACE

The Accelerator Complex Evolution (ACE) plan has two main components ACE-MIRT and ACE-BR to achieve greater than 2 MW beam power for DUNE

ACE-MIRT Main Injector Ramp & Targetry

ACE-BR Booster Replacement

Phase-II Elements and Science Drivers

Elements

- **Beam**: $1.2 \rightarrow > 2$ MW beam power
- **ND**: More capable ND (TMS \rightarrow ND-GAr)

Science Drivers

- at ND and FD, and more

May 16, 2024 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 6

FD: Two additional modules FD3 and FD4 (total of 4 detectors; 70 kt total LAr-equivalent)

Long-baseline Physics: Phase I+II combined provide ultimate measurement of 3v oscillation parameters $(\Delta m^2_{32}, \theta_{13}, \theta_{23}, and \delta_{CP})$ with 600-1000 kt·MW·yr exposure and percent-level systematic uncertainties

Neutrino Astrophysics: Expand MeV-scale neutrino astrophysics reach (e.g. supernova, solar neutrinos)

BSM Physics: More sensitive searches for long-lived particle decays and tests of 3v oscillation paradigm

Long Baseline Physics with Phase-I

- In Phase I, DUNE can accumulate ~100 kt-MW-yr of data in 5 years. This is sufficient to
 - parameter values.
 - establish CP violation at 3σ if CP violation is nearly maximal ($\delta_{CP} \approx +/-\pi/2$)
- Early implementation of Fermilab accelerator upgrades can accumulate Phase-I statistics twice as fast

The statistics of Phase-I are not sufficient to determine the octant of θ_{23} or to establish CP violation except in the most favorable scenario

conclusively determine neutrino mass ordering at $> 5\sigma$ significance, regardless of the true

Long Baseline Physics with **Phase-II**

- All elements of Phase-II (ACE-MIRT, FD3, FD4, MCND) essential for DUNE to achieve its full physics potential
 - ACE-MIRT would enable more rapid acquisition of beam neutrino statistics
 - MCND provides important systematic constraints as precision increases
- Phase-II will enable high precision measurements of all four parameters governing long-baseline oscillations $(\Delta m_{32}^2, \theta_{13}, \theta_{23}, \text{ and } \delta_{CP})$
- Establish CP violation at high significance over a broad range of possible values of δ_{CP} , and test the 3-flavor paradigm as a way to search for new physics in neutrino oscillations.

Neutrino Astrophysics with Phase-II

- Phase-II FD increased target mass, as well as potential improvements in energy resolution and background levels, key to improve detection of neutrinos from astrophysical sources in the MeV energy range
 - Supernova neutrino bursts, solar neutrinos, diffuse supernova neutrino background
 - Initial studies suggest that a significant improvement in the measurement of Δm_{21}^2 is possible in DUNE Phase-II, as well as a first observation at > 5 σ of the hep solar neutrino flux, produced via the nuclear fusion reaction (³He + $p \rightarrow {}^{4}He + e^{+} + v_{e}$) in the Sun's interior.

Los Alamos

— EST.1943 -

FD Background Control

- Enhancement of DUNE physics to lower energies relies on lower radioactive backgrounds
- Realistic background target extends threshold down to 5 MeV, just above the ⁴²K beta endpoint from ⁴²Ar
- Most significant radioactive backgrounds and mitigation strategies
 - External neutrons and gammas \rightarrow passive shielding (eg, water)
 - Internal backgrounds from detector materials \rightarrow careful material selection programs
 - Radon gas \rightarrow inline radon trap, detector materials with low radon emanation
 - Intrinsic argon backgrounds (^{39}Ar , ^{42}Ar) \rightarrow argon from underground sources
 - use underground argon in an acrylic vessel, reduce background (eg, SLoMo) See talk by C. Jackson

BSM Physics with Phase-II

- Low-density ND-GAr adds additional unique sensitivity to any BSM search involving neutral particles produced in the beam and decaying in the ND (e.g., Heavy Neutral Leptons, Axion-Like Particles)
- Phase-II FD particularly beneficial for searches that are expected to be virtually background-free at the scale of the experiment's full exposure (e.g., some Baryon Number Violation searches)
- Phase-II improves v_{τ} detection capabilities at both ND and FD
 - a promising tool to search for non-standard oscillations, for example created by light or heavy sterile neutrino mixing, or by Non-Standard Interactions (NSIs)

May 16, 2024 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 11

2023 P5 Strongly **Endorses Phase-II**

- DUNE Phase-II (> 2 MW beam ACE-MIRT, FD3, and MCND) endorsed as second highest priority (Recommendation 2), "as the definitive longbaseline neutrino oscillation experiment of its kind"
- The Panel also endorsed the DUNE FD4 concept as a "Module of Opportunity" and recommended an accelerated/expanded R&D program in the next decade including initiating construction of FD4 if budget scenarios are favorable

P5 = Particle Physics Project Prioritization Panel

Figure 1 – Program and Timeline in Baseline Scenario (B)

Index: Operation Construction R&D, Research P: Primary S: Secondary § Possible acceleration/expansion for more favorable budget situations

Science Experiments

Timeline	2024	2034
LHC		
LZ, XENONnT		
NOvA/T2K		
SBN		
DESI/DESI-II		
Belle II		
SuperCDMS		
Rubin/LSST & DESC		
Mu2e		
DarkSide-20k		
HL-LHC		
DUNE Phase I		
CMB-S4		
СТА		
G3 Dark Matter §		
IceCube-Gen2		
DUNE FD3		
DUNE MCND		
Higgs factory §		
DUNE FD4 §		
Spec-S5 §		
Mu2e-II		
Multi-TeV §		DEMONSTRATOR
LIM		

Advancing Science and Technology through Agile Experiments

SIAE §	3	

Science Enablers

LBNF/PIP-II	
ACE-MIRT	
SURF Expansion	
ACE-BR §, AMF	

A Global R&D is Forming

- The 2013 Update of the European Strategy for Particle **Physics** and its 2020 update recommended that "Europe and CERN continue to collaborate towards the successful implementation of full scope of LBNF and DUNE"
- The R&D underpinning the Phase-II concepts is performed as part of a global program which includes the *European* Committee for Future Accelerators (ECFA) and the Coordinating Panel for Advanced Detectors (CPAD) in the **United States**
- Ongoing coordination between U.S. R&D Collaborations (RDCs) and non-U.S. Detector R&D (DRD) groups on synergistic areas of R&D and towards achieving common **DUNE** Phase-II goals
 - **DRDs:** Liquid Detectors (DRD2); Gaseous Detectors (DRD1)
 - **RDCs:** Noble Element Detectors (RDC1); Photodetectors (RDC2); Gaseous Detectors (RDC6)

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 14 May 16, 2024

Phase-II Far Detector

The DUNE Far Detector

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 15

The first three DUNE FD modules will be Liquid Argon Time Projection Chambers (LArTPCs) with 17 kt total mass each

- **FD1**: Horizontal Drift (HD)
- FD2: Vertical Drift (VD)
- **FD3**: Improved LArTPC
- FD4: Module of opportunity (both LAr and non-Argon options being explored)

FD2 as a Starting Point for FD3/4

- FD2 Vertical Drift (VD) LArTPC forms the starting point for FD3/4
- Charge Readout Planes (CRPs) provide three-view charge readout: two induction planes and one collection plane
- Cathode plane at mid-height, two drift volumes of 6.5 m each
- X-ARAPUCA-based Photon Detector System (PDS) on cathode and membrane walls

2 x 6.5 m vertical drift

Potential Improvements to FD2 Charge/Light Readouts

broaden the physics program towards expanded sensitivity for MeV-scale physics

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 17

• FD3/4 R&D aimed at optimizing or upgrading VD designs for charge and light readout in an effort to

— EST.1943 —

Detector Concepts: FD3

- FD3: FD2-like, with improvements to CRP-based TPC readout and X-ARAPUCA-based PDS - Single-phase and two vertical drift volumes, 6.5 m each

 - Possible CRP optimizations: strip pitch, simpler construction techniques, ASIC upgrade
 - Possible PDS optimizations (via APEX R&D): Photon detector system on field cage, larger (up to x10) coverage compared to FD2 (~60% optical coverage of LAr active volume), digital optical transmission

May 16, 2024 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 18

See talk by W. Shi on APEX (DUNE Phase-II parallel)

Detector Concepts: FD4 Baseline

Detector Concepts: FD4 Alternative

- Water-based liquid scintillator module measuring scintillation and Cherenkov light separately (THEIA)
- Cherenkov light offers e/µ discrimination via ring imaging, and sensitivity to particle direction
- Scintillation light offers improved energy and vertex resolution, Particle-ID capability via quenching effects, and sub-Cherenkovthreshold particle detection
- Requires corresponding modifications to ND to carry out long-baseline oscillation program

See talk by L. Pickard on THEIA (DUNE Phase-II parallel)

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 21

ALBERT EINSTEIN CENTER

— EST.1943 ———

Phase-II FD Technology Integration Options

- All LArTPC technologies can be combined or integrated with others
- The WbLS technology being considered for FD4 will be complementary to LAr

Technology	LArTPC Integration		
CRP (Strip-based charge readout)	APEX		
APEX (X-ARAPUCA-based light	CRP, LArPix, Q-Pix, ARI-		
readout on field cage with SiPMs)	ADNE, SoLAr		
LArPix, LightPix (Pixel-based	APEX, SoLAr		
charge and light readout)			
Q-Pix, Q-Pix-LILAr (Pixel-based	APEX, SoLAr		
charge and light readout)			
ARIADNE (Dual-phase with optical	APEX		
readout of ionization signal)			
SoLAr (Integrated charge-light pixel	APEX, LArPix, Q-Pix		
readout)			
\mathbf{WbLS} (Water-based liquid scintilla-	None (complementary to LAr)		
tor)			

FD4 Prototyping Plans and Key R&D Goals

- All leading technologies have identified the main R&D challenges
 - Technology Readiness Levels (TRL) currently achieved: TRL ≥ 3 on all items
- They all have small- and medium-scale prototypes in operation or planned
- The ProtoDUNEs at CERN will continue to serve as an important platform to demonstrate several of these technologies and their potential for integration.

Technology	Prototyping Plans	Key R&D Goals
CRP	2024: Cold Box tests at CERN. 2025-2026: ProtoDUNE-VD at CERN.	Port LArASIC to 65 nm process
APEX	2024: 50lt & 1-ton prototypes at CERN. 2024-25: $\mathcal{O}(100)$ -channel demonstrator at Fermilab. 2025-28: ProtoDUNE-VD at CERN.	Mechanical integration of APEX PD in FC Signal conditioning, digiti- zation and multiplexing in cold
LArPix, LightPix	2024: 2x2 ND demonstrator at Fermilab. 2024-25: Cold Box tests at CERN. 2026-28: ProtoDUNE at CERN.	Micropower, cryo- compatible, detector- on-a-chip ASIC Scalable integrated 3D pixel anode tile Digital aggregator ASIC and PCB
Q-Pix, Q-Pix-LILAr	2024: Prototype chips in small-scale demonstrator. 2025-26: 16 channels/chip prototypes in ton-scale demonstrator at ORNL. 2026-27: Full 32-64 channel "physics chip".	Charge replenishment and measurement of reset time Power consumption R&D on aSe-based devices and other photoconductors
ARIADNE	2024: Glass THGEM production at Liverpool. 2025-26: ProtoDUNE-VD at CERN.	Custom optics for TPX3 camera Light Readout Plane design with glass-THGEMs Characterization of next- generation TPX4 camera
SoLAr	2024: Small-size prototypes at Bern. 2025-2028: Mid-scale demonstrator at Boulby.	Development of VUV- sensitive SiPMs ASIC-based readout elec- tronics
WbLS	2024-25: Prototypes at BNL (1- & 30-ton), LBNL (EOS), Fermilab (ANNIE). 2025-26: BUTTON at Boulby.	WbLS organic component manufacturing WbLS <i>in situ</i> purification Spectral photon sorting (di- choicons)

Phase-II Near Detector

24 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024

Phase-II ND Requirements

- To ensure that DUNE is not systematically limited, important to have a More Capable ND in Phase-II
- MCND should expand the physics capabilities of the liquid-argon ND (ND-LAr)
- Phase-II ND Requirements for an Ar target
 - Argon as primary target nucleus
 - Very high particle ID efficiency
 - Low thresholds for protons and pions
 - 4π acceptance over a wide range of momenta and angles
 - Magnetization for sign selection

Phase-I → Phase-II ND

- Gaseous argon detector (ND-GAr) will replace the Temporary Muon Spectrometer (TMS) in DUNE ND Phase-II upgrade
- Upgrades to ND-LAr and SAND are also possible
- If FD4 neutrino target is not Ar (e.g., THEIA), Phase-II ND would need to measure neutrino interactions on those target nuclei
 - Several options under consideration

ND-GAr Baseline Concept

- Cylindrical volume of 5 m linear dimensions filled with gas at 10 bar (~1 ton of Ar)
- Baseline concept includes:
 - Pressurized gaseous argon TPC
 - Surrounding calorimeter
 - Magnet: solenoid with partial return yoke
 - Muon-tagging system
- Light detection system maybe necessary to reduce pileup, and to provide the event t0 in events that do not reach the calorimeter
- Will move perpendicularly to beam with ND-LAr (DUNE-PRISM concept)

ND-GAr R&D Roadmap

- Current R&D priority: testing the full chain from amplification technology to readout electronics in a high-pressure test stand
- Amplification technology: both MWPCs and GEMs currently being tested

May 16, 2024 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 28

Ensure adequate stability and gain in a non-flammable gas with a high argon fraction

ND Options for Non-Argon Far Detectors

• Several options under consideration

- NOvA-style ND (replace NOvA scintillator with WbLS)
- LiquidO ND (use opaque scintillators with mm-scale scattering length to produce high resolution images of v interactions

May 16, 2024 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 29

Complexity

Options for a dedicated WbND

A Phase-II White Paper

- A White Paper (~70 pages) that discusses scientific opportunities and detector concepts along with a R&D roadmap for Phase-II near and far detector is underway
- Will be made public soon (arXiv and journal publication)
- Currently going through internal collaboration review
- Will serve as a reference for various stakeholders (e.g. funding agencies, new collaborators etc.)
- All Phase-II efforts are also open to institutions that are currently not part of DUNE Phase-I

DUNE Phase-II: ² Scientific Opportunities, Detector Concepts, Technological Solutions The DUNE Collaboration* 3 May 13, 2024 4 DEEP UNDERGROUND **NEUTRINO EXPERIMENT** 5

Summary

- also by 2023 P5 and European Strategy for Particle Physics
- **Design and R&D**: Significant progress in the past months towards defining a baseline scenario for Phase-II FD & ND
 - Detector requirements and concepts are being developed
 - Key R&D goals have been identified, prototyping actively underway
 - Details in DUNE Phase-II White Paper, to be made public soon
- Infrastructures: LBNF facilities at both the near and far sites support Phase-II beam and detectors from the beginning (part of Phase-I scope), simplifying Phase-II implementation
- **Resources**: Phase-II project highly international, with funding expected to be shared between US and non-US partners similarly to Phase-I
- Timeline: In a technically-limited schedule, FD3 cryostat installation could start in 2029, with FD3 filling in 2034. MCND and FD4 would follow after that.

• Science: Phase-II is essential to realize DUNE's full physics potential, as strongly endorsed

May 16, 2024 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 32

Physics Enabled by Low Backgrounds

• Example physics enabled by low backgrounds and radio purity control

Solar neutrino parameters tighten up considerably

Supernova distance sensitivity and pointing accuracy (due to access to elastics) increases

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 33

DM 90% sensitivities

A WIMP search becomes possible with FD module's enormous volume, the interior of which can be fiduciaries and densely instrumented

APEX (Aluminum Profiles with Embedded X-Arapucas)

- A fully integrated VD TPC field cage + Photon Detector System
- Keep the same FC structure as designed for the DUNE FD2 VD Module
- Simplify the ARAPUCA concept, and significantly increase photon system coverage
- Expand Power-over-Fiber (PoF) and Signal-over-Fiber (SoF) technologies developed for FD2, adopt digital optical readout

May 16, 2024 34 Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024

ARIADNE

- cameras (eg, TimePIX3) to reconstruct in 310 the primary ionization track

• Optical-based charge readout: S2 light produced in THGEM holes can be captured by fast 11 of 19

systematic uncertainties would be the dominant source of error, but a study of these has not been
Successfully prototyperformed here.

LArPix

- Complete pixel readout system for LArTPCs, developed for ND-LAr
- Relies on LArPix ASIC, a 64-ch detector system-on-a-chip including analog amplification, self-triggering, digitization, multiplexing, and a configuration controller
- Current LArPix-v2 pixel tile has 32x32 cm² size, 6400 pixels at 3.8 mm pitch, and 100 ASICs
- LightPix: LArPix ASIC variant designed for scalable readout of very large arrays of SiPMs

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 36

SoLAr

- Integrated array of VUV SiPMs on pixelated anode
- Online localized triggering for dealing with high data rates
- Existing prototypes:
 - SoLAr v1: 7x7 cm² anode plane, 16 VUV SiPMs, 3.5 mm pitch, 4 LArPix v2a chips SoLAr v2: 30x30 cm² anode plane, 64 VUV SiPMs, 4 mm pitch, 20 LArPix v2b chips

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 37

Q-Pix

- Self-triggering, low-threshold, high-granularity pixelated readout
- Changes basic quantum of information from traditional "charge per unit of time" data format to time difference between clock captures for a fixed $\Delta Q \rightarrow low data$ throughput
- A number of prototypes are currently under construction and evaluation

DUNE	E SP		DUN	E DP
/				
tions	froi	100 m SN	B	

Q-Pix Light

- Integrated charge and light readout on anode: coating of Q-Pix charge readout with signal detectable by the same readout scheme used for ionization charge
- has been demonstrated

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 39

photoconductive material (eg, aSe) that, when struck by a VUV photon, would generate a

• Viability of an aSe-based device at cryogenic temperatures with response to VUV photons

THEIA

- Hybrid optical technology: practical Cherenkov/Scintillation light separation

Timing

"instantaneous chertons" vs. delayed "scintons" \rightarrow ns resolution or better

Spectrum

UV/blue scintillation vs. blue/green Cherenkov \rightarrow wavelength-sensitivity scint

500

600 x (nm)

under Cherenkov angle \rightarrow sufficient granularity

Sowjanya Gollapinni I DUNE Phase-II Overview I CoSSURF 2024 May 16, 2024 40

• THEIA technologies: WbLS, fast photon detectors (PMTs or LAPPDs) and dichroic filters • THEIA prototypes: 1-/30-ton at BNL, EOS at LBNL, ANNIE at Fermilab, BUTTON at Boulby

Potential Upgrades to ND-LAr and SAND

- ND-LAr upgrades that require emptying: improved neutron detection with ⁶Li-glass scintillator, replacement of charge tiles with smaller pixels and lower threshold
- ND-LAr upgrades that do not require emptying: upgrade of the off-detector electronics, addition of an upstream rock muon tracker
- SAND upgrades: improving light collection with backside illuminated **SiPMs**

FD3 and FD4 Timeline

- Earliest installation start in 2029 with FD3 completed in 2034 and FD4 in 2036
- planned in the case of a LArTPC

Figure: A notional, technically limited schedule for FD3/4 assuming it is a vertical drift LArTPC similar to FD2

