

The Deep Underground Neutrino Experiment (DUNE): Prospective Physics Program and Status

Kevin Wood, <u>kwood@lbl.gov</u>, on behalf of the DUNE Collaboration CoSSURF 2024, Sanford Underground Research Facility May 14, 2024

DUNE Overview / Outline

- DUNE's primary science goal is to precisely and unambiguously measure neutrino oscillation parameters (+ SNB, proton decay)
- DUNE will measure the flavor oscillations of accelerator neutrinos over a long baseline
- Next generation experiment that improves upon the current generation experiments: T2K and NOvA

Neutrino Oscillations

3

What do we (not) know?

 Δm^2 's measured at few-% level

Long-baseline, Accelerator Neutrino Oscillations

BERKELEY LAB

Tunable neutrino source

Masud, M., Bishai, M. & Mehta, P. Extricating New Physics Scenarios at DUNE with Higher Energy Beams. Sci Rep 9, 352 (2019)

The off-axis "trick"

DEEP UNDERGRO **NEUTRINO EXPERIMENT**

Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005

K. Wood - CoSSURF 2024

DUNE's Far Detectors

Fermilab

DUNE's Near Detectors

ND-LAr: LArTPC, analogous to FD

Muon spectrometer (TMS)

BERKELEY LAB

- Phase II: Upgrade to e.g. GArTPC Ο
- SAND: Monitor flux, constrain interaction systematics
- PRISM: Move ND-LAr + TMS up to 28.5 meters (2.8°) off axis

DUNE: ND-LAr and the 2x2 Demonstrator, K. Wood Tuesday @ 2:50pm MT, "Neutrino Oscillations"

LArTPC Detection Principles

- DUNE's far detector technology: Liquid Argon Time Projection Chamber (LArTPC)
- ND-LAr at the near detector complex matches
- Variety of readout technologies (wires, strips, pixels) but same basic detection principles:

Courtesy of Bo Yu (BNL)

- Energy deposited into LAr
 - Ionization electrons
 - Scintillation light
- Charge signal drifted towards readout planes by electric field ~500 V/cm
 - Slow: up to O(few ms)
- Light detection system measures prompt signal
 - Timing information, including t0 for 3D reco

ARIADNE Design and Technology for DUNE	SoLAr: a novel approach to multipurpose LArTPCs for neutrino physics
K. Mavrokoridis, Tuesday @ 5:40pm MT, "DUNE Phase	e II" D. Guffanti, Tuesday @ 4:40pm MT, "DUNE Phase II"
APEX Design and VD Technology for DUNE FD3	Calibrating DUNE LArTPC Detectors Using Low-Energy Radioactive Decays
W. Shi, Tuesday @ 4:20pm MT, "DUNE Phase II"	M. Mooney, Thursday @ 5:00pm MT, "Supernova & Solar Neutrinos"

BERKELEY LAB

K. Wood - CoSSURF 2024

Current Generation Experiments

T2K near site

Japan

See NOvA+T2K Joint Analysis Results, G. Pawloski, "Neutrino Oscillations" parallel session

T2K	NOvA
Flux peak ~600 MeV	Flux peak ~2 GeV
295 km baseline	810 km baseline
CCQE dominant interaction mode	Broad mix of interaction modes
Reconstruct energy from lepton kinematics	Calorimetric energy reconstruction
FD 2.5° off axis	FD 1.5° off axis
Different ND and FD technologies	Functionally identical ND and FD
ND constrains systematics in the model (<i>fit</i>)	ND tunes FD pred. without fitting

USA

Current Generation Experiments

site 🛄 T2K near site

Japa<u>n</u>

VOvA near site

Current Generation Experiments

K far site LI T2K near site Japan

USA

A Matter of Mass Ordering Sensitivity

- Mass ordering sensitivity benefits from longer baselines
- Forward coherent scattering channel available to electron neutrinos

60 NOVA FD

antineutrino beam

events ³⁰

Total o

• Effect of suppressing/enhancing expected electron neutrino appearance rate depending if Nature feature normal or inverted neutrino mass ordering

13.60×10²⁰ POT-equiv (v)

lower

δ_{CP}= 3π/2

60

80

Total events - neutrino beam

12.50×10²⁰ POT (v)

Vice versa for electron antineutrinos

arrent W

BERKELEY LAB

L = 810 km

NOvA Neutrino 2020 NOvA Preliminary

NB: DUNE'S wideband beam offers more oscillation information in it's spectral shape than shown here.

K. Wood - CoSSURF 2024

2020 hest fi

120

100

DUNE: Mass Ordering and $\delta_{\rm CP}$

......

BERKELEY LAB

- DUNE will measure the mass ordering (>5 σ) within first few years of coming online
- No mass ordering $\leftrightarrow \delta_{\rm CP}$ ambiguity paves the way for CPV discovery potential
 - In favorable budget scenario, P5 recommended staging scenario enables DUNE have CPV measurement potential at >5 σ (>3 σ) for 50% (75%) of true δ_{CP} values

DUNE: Bringing Precision to PMNS

- DUNE will also greatly improve constraints on Δm_{32}^2 and $\sin^2(2\theta_{23})$
 - Electron neutrino appearance will also constrain $\sin^2(\theta_{23}) \rightarrow \text{octant sensitivity}$
- Competitive precision on $sin^2(2\theta_{13})$ with reactors in the long term

Beyond 3-Flavor Beam Oscillations

Baryon Number Violation Searches Using the DUNE Far Detector, J. Barrow Wednesday @ 2:30pm MT, "Proton Decay"

K. Wood - CoSSURF 2024

Far Site Excavation Complete

- Excavation of LBNF caverns at SURF completed in the beginning of 2024!
- On track to have FD1 operational by 2029 and FD2 by 2031

ProtoDUNEs

• 800 ton (1:25) FD prototypes with full scale components at CERN neutrino platform.

single phase / horizontal drift protoDUNE detector

B. Abi et al 2020 JINST 15 P12004

ProtoDUNEs

- 800 ton (1:25) FD prototypes with full scale components at CERN neutrino platform.
 - − ProtoDUNE-SP → ProtoDUNE-HD (FD module 1). Test beam Run1 in 2018*
 - ProtoDUNE-DP \rightarrow ProtoDUNE-VD (FD module 2).
- *Yielding publications and thesis, with more in the pipeline
- ProtoDUNE-HD is gearing up for a 2nd run. Filled with LAr April 30, 2024.
- After run, move LAr to ProtoDUNE-VD for operations

The 2x2 Demonstrator

- Demonstration of ND-LAr design in reconstructing neutrino interactions
- 2x2 array of 1.2 x 0.6 x 0.6 m³ modules containing >300K pixel channels
- @ Fermilab underground facility between repurposed MINERvA planes
- Will measure neutrino interactions in the GeV-energy regime from the NuMI beam

DUNE: ND-LAr and the 2x2 Demonstrator, K. Wood Tuesday @ 2:50pm MT, "Neutrino Oscillations"

Closing

DUNE has a very ambitious and exciting physics program, and the collaboration is working diligently towards bringing the experiment online in the early 2030s.

- More details in many other talks at CoSSURF 2024:
- DUNE: ND-LAr and the 2x2 Demonstrator, K. Wood, Tuesday @ 2:50pm MT, "Neutrino Oscillations"
- APEX Design and VD Technology for DUNE FD3, W. Shi, Tuesday @ 4:20pm MT, "DUNE Phase II"
- SoLAr: a novel approach to multipurpose LArTPCs for neutrino physics, D. Guffanti, Tuesday @ 4:40pm MT, "DUNE Phase II"
- The Theia Detector, L. Pickard, Tuesday @ 5:00pm MT, "DUNE Phase II"
- A SURF Low Background Module (SloMo), C. Jackson, Tuesday @ 5:20pm MT, "DUNE Phase II"
- ARIADNE Design and Technology for DUNE, K. Mavrokoridis, Tuesday @ 5:40pm MT, "DUNE Phase II"
- Baryon Number Violation Searches Using the DUNE Far Detector, J. Barrow, Wednesday @ 2:30pm MT, "Proton Decay"
- Overview of the DUNE Phase-II Program, S. Gollapinni, Thursday @ 10:30am MT, "Plenary: Nuclear Astrophysics, Biology, DUNE Phase II"
- DUNE Low Energy Physics with Solar and Supernova Neutrinos, G. Sinev, Thursday @ 4:20pm MT, "Supernova & Solar Neutrinos"
- Radiological Backgrounds in DUNE Far Detectors, S. Westerdale, Thursday @ 4:40pm MT, "Supernova & Solar Neutrinos"
- Calibrating DUNE LArTPC Detectors Using Low-Energy Radioactive Decays, M. Mooney, Thursday @ 5:00pm MT, "Supernova & Solar Neutrinos"

Closing

DUNE has a very ambitious and exciting physics program, and the collaboration is working diligently towards bringing the experiment online in the early 2030s.

- More details in posters at CoSSURF 2024:
- Power Over Fiber for the DUNE Vertical Drift Photon Detection System, D. Silverio
- A Novel Neutron-Based Calibration System for DUNE, W. Johnson
- Quality Assurance for Potential Supernova Neutrino Detections with DUNE at SURF, T. Rath
- Probing the Solar Neutrino Day/Night Effect, M. Fodroci

January 2024 DUNE Collaboration Meeting @ CERN

