

Baryon Number Violation Searches Using the DUNE Far Detector

Conference on Science at the Sanford Underground Research Facility

by J. L. Barrow

On Behalf of the DUNE Collaboration For the High-Energy Physics Working Group The University of Minnesota May 15th, 2024

Fermilab

What is DUNE?

Goals of DUNE

- Extract ν oscillation parameters, especially δ_{CP}
 - <u>First</u> measurements will be rendered using atmospheric vs
- Search for BSM physics (baryon number violation)

Implications of DUNE

• Precision U_{PMNS} , lepton universality, τ production, BSM/NSI constraints, calibrations, cross sections (ND)

Features and Challenges

- v_{beam} : timing, broadband (~1-5GeV) energy, known direction
- v_{atm} : no timing, even broader energies, ~unknown direction
 - **Backgrounds** for rare processes: $p \to K^+ \overline{\nu}$ and $n \to \overline{n}$

2

Liquid Argon Time Projection Chambers

- γ/e discrimination
 - Tracks and gaps
- Access to low KE hadron thresholds
- DUNE's technology
- ⁴⁰Ar as nuclear target and detector medium
- Ionization of LAr for track and shower reconstruction
 - Charge drifts via high \vec{E} field
 - mm-scale resolution
 - *dQ/ds~dE/ds* for calorimetry

Liquid Argon Time Projection Chambers

- γ/e discrimination
 - Tracks and gaps
- Access to low KE hadron thresholds
- DUNE's technology
- ⁴⁰Ar as nuclear target and detector medium
- Ionization of LAr for track and shower reconstruction
 - Charge drifts via high \vec{E} field
 - mm-scale resolution
 - *dQ/ds~dE/ds* for calorimetry

The Baryon Asymmetry of the Universe Implies BNV is a Necessary Part of Sakharov Conditions

- <u>Protons outnumber antiprotons</u> in cosmic rays 10⁴:1
- Cosmic microwave background (CMB) yields magnitude $\beta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx \frac{n_B - 0}{n_{\gamma}} \approx 10^{-10}$
- Expectation: effectively no leftover B or \overline{B}
 - Due to mutual annihilation occurring down to roughly 1 GeV ("freeze" out)
 - Gives rise to an *expected relic baryon abundance*

$$n_B = n_{\bar{B}} \approx \frac{n_{\gamma}}{\sigma_{ann} m_B m_{Pl}} \approx 10^{-19} n_{\gamma}$$

• Comparison between these: ~10⁻⁹...*that's Bill Gate's lunch*

Going Beyond the Standard Model

What else do we need to add?

 $\mathcal{O}_{2N}^9 \sim \lambda \frac{q q q \overline{q} \overline{q} \overline{q}}{M_{\sim EWPT}^5}$

- $PDK \propto qqql \Rightarrow B L$ conserved
- Key to BSM GUT & SUSY theories
- Other $\Delta B \neq 0$ or $\Delta L \neq 0$?
 - $\Delta B = 2$ operators?

"Golden Channel"

Supersymmetric Particles Can Lower Mass Scales for Observable PDK

7

Expected PDK Lifetimes From GUTs and Supersymmetric GUTs

Courtesy of E. Kearns

$p \rightarrow K^+ \overline{\nu}$ Expected Event Topologies

Opens Doors to Deep Learning Techniques

$p \rightarrow K^+ \overline{\nu}$ Expected Event Topologies

Opens Doors to Deep Learning Techniques

$p \rightarrow K^+ \overline{\nu}$ Expected Event Topologies

Opens Doors to Deep Learning Techniques

PDK Event Displays

Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment

Neutron-Antineutron Transformation $(n \rightarrow \overline{n})$ **Testable** $|\Delta B| = 2$ **Process with Direct Baryon Abundance Predictability** • $\Psi = \binom{n}{n}$ evolves according to the Hamiltonian: $\mathcal{H}_{n \to \bar{n}} = \begin{pmatrix} m_n - \overrightarrow{\mu_n} \cdot \overrightarrow{B} - \frac{i\lambda}{2} & \delta m \\ \delta m & m_n + \overrightarrow{\mu_n} \cdot \overrightarrow{B} - \frac{i\lambda}{2} \end{pmatrix} \Longrightarrow \mathcal{P}_{n \to \bar{n}}(t) \cong \left(\frac{\delta m}{\overrightarrow{\mu_n} \cdot \overrightarrow{B}}\right)^2 \left(\overrightarrow{\mu_n} \cdot \overrightarrow{B}t\right)^2 = \left(\frac{t}{\tau_{n \to \bar{n}}}\right)^2 \qquad \Delta_{dd} \cancel{\Delta_{dd}} \swarrow \Delta_{dd} \cancel{\Delta_{dd}} \swarrow \Delta_{dd} \cancel{\Delta_{dd}} \cancel{\Delta_{dd}}$ Δ_{ud} QFT perspective Post-Sphaleron Baryogenesis Mohapatra et al <u>2006</u>, <u>2013</u> • Heavy (~100 TeV) Higgs-like scalar S decays to (di)quarks

- Under proper laboratory conditions
 - Matter spontaneously becomes antimatter
 - Free neutron beams
 - Within nuclei

 Δ_{ud}

$n \rightarrow \overline{n}$ Expected Event Topologies

Opens Doors to Deep learning techniques

$n \rightarrow \overline{n}$ Event Displays

Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment

MicroBooNE Simulation

a) T

*

27 cm

Atmospheric Neutrinos Analysis Progress

Atmospheric v **Oscillation Promise**

- Primary Rare Processes' background
- Valuable ν oscillation physics signal
 - Many baselines, many energies
- v_{atm} sample adds to v_{beam} sample
 - Increases overall DUNE sensitivities
 - Different systematic uncertainties
 - Improvements to angle resolution very important at low energies
 - Difficult due to Fermi motion
 - New ML methods in development by DUNE HEPWG members
 - Could improve v_{atm} and even v_{beam} reconstruction

Atmospheric Spectra at Homestake

Expected v_{atm} **Count** Rates via Integration a Key Input for BNV Backgrounds

Improvements from past analysis

- Interpolation scheme
- Move to NuFitv5.2 w/OscProb
- CC $v_{\tau}/\bar{v_{\tau}}$ expectations

Ongoing work directly targets systematic uncertainties

- Cross section dependencies
- Solar minimum/maximum
- PREM layering constraints
- Normal/Inverted ordering
- Production height
- Will serve as key inputs to forthcoming <u>MaCh3 osc.</u> <u>analysis</u>

Rates already being used in current BNV studies

M. Oliveira-Ismerio

$$\phi(E) = 10^{\log_{10}\phi(E_1) + \frac{\log_{10}\phi(E_2) - \log_{10}\phi(E_1)}{\log_{10}E_2 - \log_{10}E_1}} (\log_{10}E - \log_{10}E_1)$$

Number of Events Distribution - Honda Solar Minimum, NuFIT 5.2 (NO), Local Fermi Gas

 v_{τ} are also of interest to our group: B. Yaeggy <u>APS April 2024</u>

Atmospheric Angular Reconstruction

Improved Resolution Driven by LArTPCs' Hadronic Reconstruction Capabilities

- Final part of atmospheric production underway (15M)
 - Lead by P. Granger (APC) and S. Farrell (Rice)
- Reconstruction techniques across many energies under development
 - Lead by APC group (kinematics), Rice (process identification)
 - Optimizing tools will inform first publication's energy range and analysis target
 - Improved reconstruction < 1 GeV can empower δ_{CP} sensitivity
 - Near future: ML-powered energy and angle estimation for oscillations
- <u>MaCh3</u> ν oscillation framework for atmospherics nearly ready to go (APC & Imperial groups)
 - Systematics inputs under development for full analysis

P. Granger, H. Souza, C. Sironneau, C. Mironov

Understanding **Nuclear Modeling Systematics** In **Rare Processes**

Nuclear Model Configuration Comparative Flows

Signal & Background Sample Comparisons to Better Determine Modeling Systematics

S:B	hA_BR	hA_LFG	hA_ESF	hN_BR	hN_LFG	hN_ESF
hA_BR	$\tau_{n\bar{n}}$					
hA_LFG	:	N				
hA_ESF						
hN_BR						
hN_LFG						
hN_ESF						

B:B	hA_BR	hA_LFG	hA_E SF	hN_BR	hN_LFG	hN_ESF
hA_BR		Kinematic Distributions (BDT inputs)				
hA_LFG	Kinematic Distributions (BDT inputs)		N.			
hA_ESF	:	N				
hN_BR						
hN_LFG						
hN_ESF						

Mixing signal and background models to understand ranges of expected background rates and signal efficiencies

Mixing of available nuclear models and final state interaction models

Effectively a "universe" approach

A good way to conservatively understand modeling systematics for an unknown process is to iterate!

Initial Nucleon Momentum Distributions

Initial State Preparation for Atmospherics, $p \to K^+ \overline{\nu}$, & $n \to \overline{n}$ in GENIEv3.0.6

Initial Nucleon Momentum Distributions $p \rightarrow K^+ \overline{\nu}$ **Initial State in GENIEv3.0.6**

Momentum of Decaying Nucleon vs. Position of Decaying Nucleon

Momentum of Decaying Nucleon vs. Position of Decaying Nucleon

Nuclear Modeling Effects on Kaon Energy

- K^+ generated directly from decaying p in nucleus
 - Initial momentum from Fermi motion and rest mass
 - FSI effects of hA or hN Intranuke 2018 show differences
 - hA has distinct shift toward lower energies upon exiting envelope

Nuclear Modeling Effects on Kaon Energy

- K^+ generated directly from decaying p in nucleus
 - Initial momentum from Fermi motion and rest mass
 - FSI effects of hA or hN Intranuke 2018 show differences
 - hA has distinct shift toward lower energies upon exiting envelope

Kaon Kinetic Energy (GeV)

T. Stokes

Nuclear Modeling Effects on Kaon Energy

- K^+ generated directly from decaying p in nucleus
 - Initial momentum from Fermi motion and rest mass
 - FSI effects of hA or hN Intranuke 2018 show differences
 - hA has distinct shift toward lower energies upon exiting envelope

Kaon Kinetic Energy (GeV)

T. Stokes

28

Ongoing $p \rightarrow K^+ \bar{\nu}$ **Analysis**

Preselection Cuts Before BDT Input Improving PDK Signal Quality and Reducing Backgrounds

- 1. >Two tracks per event
- 2. A common vertex between tracks, each within 5cm
- 3. Short track kinetic energy requirement, improves purity
- 4. Long track length of requirement, reduces backgrounds
- 5. Short track must contain min. numb. Hits, improve *dE/ds*

T. Stokes

Boosted Decision Tree Implementation

Strategy:

- 1. Select a nominal nuclear model configuration (hA LFG)
 - Note that hA predicts markedly lower K^+ FS kinetic energy—conservative
- 2. Tune BDT parameters to this base model
- 3. Obtain a classification
 - Use base nuclear model configuration BDT parameters, run over all others

What you get:

- A spread of signal efficiencies and background rates
 - Expected due to different responses to FSs from each configuration
- Representation of how changing model affects classification
 - Can be used to conservatively estimate nuclear modeling uncertainties
 - Large component of the systematics will come from this source

Still need to show consistency of performance with very high statistics

DUNE Simulation dunesimv09 42 03 GENIEv3.0.6 G18_10x Base Tune DUNE:FD HD 1x2x6 Reduced Geometry

BDT Scoring: hN_BR

-0.8

BDT Scoring: hN LFG **DUNE IN PROGRESS DUNE IN PROGRESS DUNE IN PROGRESS** Background Test Sample Background Test Sample Background Test Sample Background Train Sample Background Train Sample • Background Train Sample • Signal Test Sample Signal Test Sample Signal Test Sample Signal Train Sample Signal Train Sample Signal Train Sample -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 1 BDT Score BDT Score

BDT Scoring: hN ESF

0.8

BDT ROC Curves from Testing Samples Signal Efficiency vs. Expected Background Count hA LFG Base Training

Theoretically Important Parameter Space of $au_{n ightarrow \overline{n}}$

Post-sphaleron baryogenesis predicts the free $n \rightarrow \bar{n}$ transformation time

- Dark blue shows the new Super-K result
- Orange shows the DUNE TDR analysis using the hA_BR model configuration with the new R_{Ar}
- Blue dashed shows converted limit from intranuclear transformation time
 - DUNE@400kt \cdot yr~13,500 ×<u>ILL sensitivity</u>
 - Assumes 25% efficiency
 - Assumes backgroundless search
- Red line shows free neutron transformation time
 - ESS, 3-year *goal:* 1000x ILL sensitivity
 - Assuming ILL-like *zero background*
 - Ongoing work to show this definitively
 - <u>Potential</u> for increase by 10⁴?

Future Directions for Baryon Number Violation

Analysis Flow Using Automated Learning Techniques For Event-Level Classification

NuGraph2, V Hewes

NuGraph2 Using MicroBooNE Open Data Release

- A state-of-the-art graph neural network for semantically labelling detector hits in neutrino physics experiments
- Works natively on detector hits without modifying structure
- Utilizes a nexus convolution block
 - Combines information from all planes and injects it back into each plan at specific intervals

3D Nexus convolutions

3D graph nodes/convolutions perform message-passing independently in each detector view

3D graph nodes/convolutions add additional 3D steps to the standard message passing loop

How Does NuGraph Work?

- NuML: ROOT files converted to HDF5
 - Holds low level information
 - Simulated particle labels, hits, true energy deposition, etc.
 - GitHub: <u>https://github.com/vhewes/numl</u>
- PyNuML: Provides efficient, flexible solution for tasks leveraging ML in particle physics
 - Defines ground truth labels
 - Arranges detector hits in ML objects (graphs)
 - Makes pixel maps, etc.
 - GitHub: <u>https://github.com/vhewes/pynuml</u>

Producing Graphs for Model Training

Inference in Production

NuGraph2

Semantic Labeling Performance in Example v_u Interaction

- NuGraph2 can semantically label detector hits well
 - Particle identification & topology is critical
 - Central in separating $p \to K^+ \bar{\nu}$ signal from atmospheric ν background
- NuGraph2 can operate after training to yield binary classifier
 - Direct access to signal-like or background-like discriminator
 - Can semantically label K⁺ classes in signal and background
 - Plan: Utilize this binary classification as an input into the BDT analysis

V Hewes CHEP 2023

NuGraph2

Semantic Labeling Performance in Example v_e Interaction

- NuGraph2 can semantically label detector hits well
 - Particle identification & topology is critical
 - Central in separating $p \rightarrow K^+ \bar{\nu}$ signal from atmospheric ν background

NuGraph2 can operate after training to yield binary classifier

- Direct access to signal-like or background-like discriminator
- Can semantically label K⁺ classes in signal and background

Predicted semantic labels

- Plan: Utilize this binary classification as an input into the BDT analysis

Trained on MicroBooNE open datasets

- 86% overall hit efficiency
- With 3D connections, consistency between views improved from 70% to 98%

True semantic labels

NuGraph2 Event Classification Training on 40k:40k Signal:Background Events

T. Stokes

41

NuGraph2 Binary Classifier for $p \rightarrow K^+ \overline{\nu}$ and Atmospheric ν

True Positive

True semantic labels for signal-like true $p \rightarrow K^+ \bar{\nu}$ signal

DUNE Simulation dunesimv09_42_03 GENIEv3.0.6 G18_10x Base Tune DUNE:FD HD 1x2x6 Reduced Geometry NuGraph2 Training on hA LFG Sig:Bckgr 40k:40k

Predicted semantic labels for signal-like true $p \rightarrow K^+ \bar{\nu}$ signal

Summary & Conclusions

- DUNE's first neutrino physics results will come from atmospheric neutrino oscillation measurements
 - HEPWG taking lead here, working toward first publication
 - Rate predictions, flux uncertainties, ang. reco. improvements ongoing
 - Exploiting LArTPC powers for hadronic info critical to improvements
 - MaCh3 Oscillation framework ready for analyses
 - Large first analysis near complete
 - Will eventually be a key input for precision BNV background studies
- BNV analyses ongoing, new PDK sensitivities soon
 - Understanding nuclear mod. syst. uncertainties critical
 - Iteration over nonreweightable nuc. mod. configs. as conservative estimator of selection effects in automated methods (BDT, NuGraph)
 - Will directly assess signal eff. & background rate uncertainties
 - Current BDT framework shows good performance
 - NuGraph performance incredibly encouraging for future
 - New $n \rightarrow \overline{n}$ analysis in development, new BRs now in GENIE