Joint Analysis Results from the NOvA & T2K Experiments

CoSSURF 2024 – Rapid City

Gregory Pawloski

University of Minnesota

General Theme

Produce a beam of muon neutrinos and antineutrinos Alternate between beam modes

Shoot the beam through the Earth

Measure Disappearance and Appearance Modes of Oscillation ${}^{'}\overline{v}^{"}_{\mu} \rightarrow {}^{'}\overline{v}^{"}_{\mu}$ and ${}^{'}\overline{v}^{"}_{\mu} \rightarrow {}^{'}\overline{v}^{"}_{e}$

Near and Far Detectors Near Detector(s) Measure beam before standard oscillation Far Detector(s) Measure the oscillated beam

Physics Sensitivity

Oscillations governed by Δm^2_{32} (Δm^2_{31})

Physics Sensitivity

Oscillations governed by Δm^2_{32} (Δm^2_{31})

Disappearance Mode Sensitivity

 $\begin{vmatrix} \Delta m_{31}^2 \\ \sin^2(2\theta_{23}) : \end{vmatrix}$

Mass-Squared Splitting Maximal Mixing

Physics Sensitivity

```
Oscillations governed by \Delta m^2_{32} (\Delta m^2_{31})
```

```
Disappearance Mode Sensitivity
```

 $|\Delta m_{31}^2|$ $\sin^2(2\theta_{23})$: Mass-Squared Splitting Maximal Mixing

```
Appearance Mode Sensitivity
```

Sign of Δm^2_{31} $\theta_{23} > 45^o$ or $\theta_{23} < 45^o$ δ_{CP} Mass Ordering Octant of θ_{23} CP-Violation ($\delta_{CP} \neq n\pi$)

Physics Sensitivity: Matter-Antimatter Differences

CP-Violation

 δ_{CP} has opposite impact on appearance probability for neutrinos and antineutrinos Enhancement or Reduction

Mass Ordering

Matter Effect has impact on on appearance probability Enhancement or Reduction depends on Ordering

Source of degeneracy Matter Effect has opposite impact on appearance probability for neutrinos and antineutrinos Enhance or Reduction

NOvA + T2K – Complementary Baselines

T2K Beamline $E \approx 0.6 \text{ GeV}$ (off-axis narrow band beam) L = 295 km

NOvA Beamline $E \approx 1.9 \text{ GeV} \text{ (off-axis narrow band beam)}$ L = 810 km

NOvA + T2K – Complementary Parameter Spaces

Impact on Appearance Probability at peak energy

CP Violation $\pm 30\%$ Matter Effect $\pm 9\%$

NOvA: L= 810 km, E = 2.0 GeV

Impact on Appearance Probability at peak energy

CP Violation	<u>+</u> 25%
Matter Effect	±19%

NOvA + T2K – Complementary Detectors

Near Detector: Magnetized Particle Tracking w/ Plastic Scintillator

Far Detector: Water Cherenkov

Far and Near Detectors

Functionally Identical Liquid Scintillator Tracking Calorimeters

NOvA + T2K – Event Topologies

Focus of Lepton Kinematics Exclusive 1 lepton + n π channels q(ADC)

Joint Fit – Machinery

Bayesian Analysis Use Penalty terms for systematics pulls Use external constraints on θ_{13} , θ_{12} , Δm_{21}^2

Use Poisson likelihood from each experiment

Joint Fit -Correlations

Both experiments are statistics limited and systematic correlation is currently not significant to results

Flux Modeling

Different beam energies and external data sources (not significant source of correlation)

Detector Modeling

Different detector designs

Selection Criteria and Energy Reconstruction

Neutrino-Nucleus Interaction Modeling correlations

Different beam energies with different primary interaction modes

Stats-limited correlations not as significant on results

Different generators (NEUT vs GENIE)

Less straightforward to implement correlation

Uncertainty on v_e/v_μ and \bar{v}_e/\bar{v}_μ cross section ratio implemented

Use Published Data Results from 2020

T2K: Eur. Phys. J. C (2023) 83:782 (2023) NOvA: Phys. Rev D 106, 032004 (2022) (Frequentist) and arXiv:2311.07835 (Bayesian)

Channel	NOvA	T2K
ν_{e}	82	94 (v _e)
		14 (ν _e 1π)
$\overline{\nu}_{e}$	33	16
$ u_{\mu}$	211	318
$\overline{ u}_{\mu}$	105	137

Use Published Data Results from 2020

T2K: Eur. Phys. J. C (2023) 83:782 (2023) NOvA: Phys. Rev D 106, 032004 (2022) (Frequentist) and arXiv:2311.07835 (Bayesian)

Channel	NOvA	T2K
v _e	82	94 (ν _e) 14 (ν _e 1π)
\overline{v}_{e}	33	16
$ u_{\mu}$	211	318
$\overline{ u}_{\mu}$	105	137

Use Published Data Results from 2020

T2K: Eur. Phys. J. C (2023) 83:782 (2023) NOvA: Phys. Rev D 106, 032004 (2022) (Frequentist) and arXiv:2311.07835 (Bayesian)

Channel	NOvA	T2K
v_{e}	82	94 (v _e) 14 (v _e 1π)
$\overline{\mathbf{v}}_{e}$	33	16
$ u_{\mu}$	211	318
$\overline{ u}_{\mu}$	105	137

Use Published Data Results from 2020

T2K: Eur. Phys. J. C (2023) 83:782 (2023) NOvA: Phys. Rev D 106, 032004 (2022) (Frequentist) and arXiv:2311.07835 (Bayesian)

Channel	NOvA	T2K
v _e	82	94 (ν _e) 14 (ν _e 1π)
\overline{v}_{e}	33	16
$ u_{\mu}$	211	318
$\overline{ u}_{\mu}$	105	137

Use Published Data Results from 2020

T2K: Eur. Phys. J. C (2023) 83:782 (2023) NOvA: Phys. Rev D 106, 032004 (2022) (Frequentist) and arXiv:2311.07835 (Bayesian)

Channel	NOvA	T2K
v _e	82	94 (ν _e) 14 (ν _e 1π)
\overline{v}_{e}	33	16
$ u_{\mu}$	211	318
$\overline{ u}_{\mu}$	105	137

Results Consistent with Maximal Mixing

Slight Preference for Upper Octant Posterior 78% to 22% Upper vs Lower No significant preference for Mass Ordering Posterior 58% to 42% Inverted vs Normal

 $\delta_{CP} = \frac{\pi}{2}$ ruled out at 3σ assuming either M.O.

CP-conserving $\delta_{CP} = 0, \pm \pi$ ruled out at 3σ assuming Inverted M.O.

CP-conservation permitted assuming Normal M.O.

Similar story for Jarlskog-invariant *Phys. Rev. D* 100, 053004 (2019)

Comparisons to others – δ_{CP}

Comparisons to others – Δm_{32}^2

Summary & Outlook

T2K and NOvA data compatible with each other

Joint fit results

Strong constraint on $\left|\Delta m^2_{32}\right|$

 $\delta_{CP} = \frac{\pi}{2}$ ruled out at 3σ for either Mass Ordering

CP-conservation ruled out at 3σ for Inverted Mass Ordering

Both Experiments are expected to double data set before end of operations Potential future collaboration

Current Measurements from NOvA and T2K

Joint Fit – Cross-section Modeling

Fit Mock Data

Single Pion Suppression MINERvA: PRD 100 072005

Joint Fit - θ_{13} & θ_{23}

Joint Fit – Jarlskog Invariant

Neutrino Interactions

