A New Understanding of

Coherence in Bragg-Primakoff

Scattering

Adrian Thompson

James B. Dent

Bhaskar Dutta

CETUP 2023 | June 23, 2023

Searches for Axion-like Particles

QCD Axions

 $a \mathrm{Tr}[G_{\mu\nu}\tilde{G}^{\mu\nu}]$

DM Axions

$$m_a \lesssim 0.1 \,\mathrm{eV}$$

Long Lived ~ Age of Universe

Dynamically relax CP

violation in QCD

EW couplings arise easily and make for sensitive probes

QCD Axions and Axion-like Particles

Canonical Axion-photon detection schemes

Sikivie, 1983

- Coherent conversion in EM Field
- Helioscopes, Haloscopes

Buchmuller, Hoogeveen 1990

- Coherent Bragg-Primakoff conversion
- Light-shining-through-wall (LSW)
- Solar Axions

Solar Axions

ABC Processes: Axio-electric, Compton, Brem

Solar Axions

Primakoff Scattering

Solar Axions

Primakoff Scattering

57Fe / nuclear de-excitation

Inverse Primakoff Scattering

- Atomic coherence:
 - $q \ll 1/R$
 - $\sigma \propto Z^2$
- Forward scattering, elastic:

$$E_{\gamma} \simeq E_a$$

$$\langle \mathcal{M}_P \rangle = \frac{4e^2 g_{a\gamma}^2}{t^2} E_{\gamma}^2 m_N^2 k^2 \sin^2 \theta$$
$$\frac{d^2 \sigma}{d\Omega dE_{\gamma}} = \frac{g_{a\gamma}^2}{16\pi^2} \frac{k_a^4}{q^4} |F(q)|^2 \sin^2(2\theta) \delta(E_a - E_{\gamma})$$

Atomic Form Factor

Bragg-Primakoff Scattering: Crystal Structure

$$\vec{a}_1 = \frac{d}{2}(0, 1, 1)$$
$$\vec{a}_2 = \frac{d}{2}(1, 0, 1)$$
$$\vec{a}_3 = \frac{d}{2}(1, 1, 0)$$
Discrete
Fourier Transform
$$\vec{a} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$$

 $|\vec{G}| \sim \text{\AA}^{-1}$ Reciprocal Interatomic Distance \rightarrow Momentum Transfer Scale $\sim keV$

Bragg-Primakoff Scattering: Solar ALP Limits

Phys. Rev. Lett. 129, 081803 (Majorana Demonstrator)

Wait a minute...something is broken

Light-shining-throughwall (LSW) theory

$$P_{a \to \gamma} \propto L_{att}^2 \to R \propto \frac{L_{att}}{L} \times V$$

Dependence on attenuation depth

$$L_{att} = L_{bragg} \sim 1 \,\mu\mathrm{m}$$

COHERENT PRODUCTION OF LIGHT SCALAR OR PSEUDOSCALAR PARTICLES IN BRAGG SCATTERING

W. BUCHMÜLLER *.b and F. HOOGEVEEN *

- * Institut für Theoretische Physik, Universität Hannover, D-3000 Hannover, FRG
- ^b Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg, FRG

Solar ALP Theory

No Dependence on attenuation

depth

Prospects of solar axion searches with crystal detectors

S. Cebrián, E. García, D. González, I.G. Irastorza, A. Morales^{*}, J. Morales, A. Ortiz de Solórzano, J. Puimedón, A. Salinas, M.L. Sarsa, S. Scopel, J.A. Villar Laboratorio de Física Nuclear, Universidad de Zaragoza, 50009, Zaragoza, Spain

Received 23 November 1998

Buchmuller, Hoogeveen:

Instead of Bragg scattering one can of course also consider Laue scattering, where the penetration depth is much larger. For 100 keV photons and scattering angle $\Theta \sim 1^{\circ}$ one can achieve $l \sim 1$ cm [13]. This would improve the lower bound (24) on the mass scale *M* by three orders of magnitude up to $\sim 10^{6}$ GeV. Such an experiment would clearly be very interesting. It remains to be seen, however, whether the effective electric field \overline{E} which appears in eq. (23) is the same as for Bragg scattering. A detailed calculation will be published elsewhere.

Laue-type scattering considered in 2017:

Theoretical calculation of coherent Laue-case conversion between x-rays and ALPs for an x-ray light-shining-through-a-wall experiment

T. Yamaji,^{1,*} T. Yamazaki,² K. Tamasaku,³ and T. Namba⁴

What is coherence??

What is coherence??

$$R(E_1, E_2) = g_{a\gamma}^2 \frac{\pi \hbar c V}{v_a^2} \sum_{\vec{G}} \frac{d\Phi_a}{dE_a} \cdot \frac{1}{|\vec{G}|^2} \sum_j |F_j(\vec{G})S_j(\vec{G})|^2 \sin^2(2\theta) \mathcal{W}$$

With this treatment of coherence, we recover the canonical solar axion Bragg-Primakoff Event Rate

Borrmann Effect of Anomalous Absorption

$$\mu_{\rm eff} = \mu_0 \left[1 - \frac{F''(hkl)}{F''(000)} \right]$$

- Borrmann, Batterman (1961), Wagenfield (1987), Biagini (1990)...
- An anomalous <u>decrease</u> of the absorption coefficient → <u>increase</u> in the mean free path / attenuation length
- Depends on imaginary form factor

$$F''(hkl) = |S(hkl)|\Delta f''(\vec{q} = \vec{G}(hkl))$$

• Lifts some of the coherence suppression!

Borrmann Effect of Anomalous Absorption

$$\mu_{\text{eff}} = \mu_0 \left[1 - \frac{F''(hkl)}{F''(000)} \right] \quad F''(hkl) = |S(hkl)| \Delta f''(\vec{q} = \vec{G}(hkl))$$

19

Modified Event Rate

Numerically compute

this on a lattice

◄

$$I(\vec{k},\vec{G}) \equiv \sum_{j\neq i}^{N} \sum_{i=1}^{N} e^{-|\vec{k}' \cdot (\vec{r}_{i} - \vec{r}_{j})|/(2\lambda)}$$
$$\frac{dN}{dt} = \frac{(2\pi)^{3} e^{2} g_{a\gamma}^{2}}{8\pi^{2}} \frac{V}{v_{\text{cell}}^{2}} \sum_{\vec{G}} I(\vec{k},\vec{G}) \frac{d\Phi_{a}}{dE} \frac{k^{2} \sin^{2}(2\theta)}{|\vec{G}|^{4}} |F_{A}(\vec{G})S(\vec{G})|^{2} \mathcal{W}(E_{1},E_{2},E)$$

The effect is that our event rate gets attenuated by I

Absorption leads to a loss of coherence

Modified Event Rate: By Angles

- Solar angle traces a trajectory throughout the day
- Seasonal + daily modulations
- Time dependence is a good discriminator + a potential lever to minimize the absorption suppression

LEGEND-1000, $g_{a\gamma} = 10^{-9} \, [\text{GeV}^{-1}]$

Modified Event Rate: Energy / Time

- Solar angle traces a trajectory throughout the day
- Seasonal + daily modulations
- Time dependence is a good discriminator + a potential lever to minimize the absorption suppression

Experimental Prospects

Experiment	Total Mass	Threshold	Exposure (tonne-years)
SuperCDMS (Ge)	25.2 kg	1 keV	0.1
SuperCDMS (Si)	3.6 kg	1 keV	0.0144
LEGEND-200 (Ge)	195 kg	1 keV	0.78
LEGEND-1000 (Ge)	1 tonne	1 keV	4.16
SABRE (Nal)	50 kg	1 keV	0.15
tonne-scale Nal	5 tonne	1 keV	50
tonne-scale Csl	5 tonne	1 keV	50

Question: How big do we have to get to probe beyond the HB stars constraints?

Sensitivities: With Absorption

Cooling Hints as a Bonus

Gianotti, Irastorza, Redondo, Ringwald 1512.08108

Sensitivities: With Cooling Hints

27

Sensitivities: Can we get there?

Takeaway

- Coherent scattering relies on vanishing phases in the matrix element sum
- These terms depend on the wave functions of the in and out states – photon out states get attenuated in a dielectric
- This hasn't been accounted for in solar axion Bragg-Primakoff searches!
- We want sensitivity to QCD axions beyond the HB stars constraints, but we'll need clever thinking to properly utilize the technology we have to get there

Backup Deck

Solar Axion Searches at LXe

Dent, Dutta, Newstead, Thompson Phys.Rev.Lett. 125 (2020) 13, 131805

Sensitivities: With DM Bounds

Solar Fluxes for Massive ALPs

- Primakoff: $\gamma + Z \rightarrow a + Z$
- Photon Coalescence (more important for > keV ALPs): $\gamma\gamma \rightarrow a$

33