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In Standard Model:  no  !  .                                                             νR ⟹ Mν = 0

 oscillationν

τ−

π−

U*τj
νj Uαj

n p

ℓ−
α

Distance L

P(ντ → να) = ∑
j

U*τjUαj exp (−i
m2

j L
2E )

2

exp(−ipx) → exp(−im2
j L /2E)

  |να⟩ = ∑
i=e,μ,τ

Uiα |νi⟩ ⟹ Mν ≠ 0

NuFIT 5.2 (2022)
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Normal Ordering (best fit) Inverted Ordering (�‰2
= 2.3)

bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range

sin
2 ◊12 0.303+0.012

≠0.011 0.270 æ 0.341 0.303+0.012
≠0.011 0.270 æ 0.341

◊12/¶
33.41+0.75

≠0.72 31.31 æ 35.74 33.41+0.75
≠0.72 31.31 æ 35.74

sin
2 ◊23 0.572+0.018

≠0.023 0.406 æ 0.620 0.578+0.016
≠0.021 0.412 æ 0.623

◊23/¶
49.1+1.0

≠1.3 39.6 æ 51.9 49.5+0.9
≠1.2 39.9 æ 52.1

sin
2 ◊13 0.02203+0.00056

≠0.00059 0.02029 æ 0.02391 0.02219+0.00060
≠0.00057 0.02047 æ 0.02396

◊13/¶
8.54+0.11

≠0.12 8.19 æ 8.89 8.57+0.12
≠0.11 8.23 æ 8.90

”CP/¶
197

+42
≠25 108 æ 404 286

+27
≠32 192 æ 360

�m2
21

10≠5 eV
2 7.41+0.21

≠0.20 6.82 æ 8.03 7.41+0.21
≠0.20 6.82 æ 8.03

�m2
3¸

10≠3 eV
2 +2.511+0.028

≠0.027 +2.428 æ +2.597 ≠2.498+0.032
≠0.025 ≠2.581 æ ≠2.408
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Normal Ordering (best fit) Inverted Ordering (�‰2
= 6.4)

bfp ±1‡ 3‡ range bfp ±1‡ 3‡ range

sin
2 ◊12 0.303+0.012

≠0.012 0.270 æ 0.341 0.303+0.012
≠0.011 0.270 æ 0.341

◊12/¶
33.41+0.75

≠0.72 31.31 æ 35.74 33.41+0.75
≠0.72 31.31 æ 35.74

sin
2 ◊23 0.451+0.019

≠0.016 0.408 æ 0.603 0.569+0.016
≠0.021 0.412 æ 0.613

◊23/¶
42.2+1.1

≠0.9 39.7 æ 51.0 49.0+1.0
≠1.2 39.9 æ 51.5

sin
2 ◊13 0.02225+0.00056

≠0.00059 0.02052 æ 0.02398 0.02223+0.00058
≠0.00058 0.02048 æ 0.02416

◊13/¶
8.58+0.11

≠0.11 8.23 æ 8.91 8.57+0.11
≠0.11 8.23 æ 8.94

”CP/¶
232

+36
≠26 144 æ 350 276

+22
≠29 194 æ 344

�m2
21

10≠5 eV
2 7.41+0.21

≠0.20 6.82 æ 8.03 7.41+0.21
≠0.20 6.82 æ 8.03

�m2
3¸

10≠3 eV
2 +2.507+0.026

≠0.027 +2.427 æ +2.590 ≠2.486+0.025
≠0.028 ≠2.570 æ ≠2.406



Lepton Flavor is definitely violated, so where is it?

 prove that SM global symmetry
 is broken! 

να ↔ νβ
U(1)Le

× U(1)Lμ
× U(1)Lτ

⇒ U(1)Lμ−Lτ
× U(1)Lμ+Lτ−2Le
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Dirac vs Majorana

Dirac neutrinos: 
   Introduce  to the SM ( ) allowing           

                                  
νR SU(3)C ⊗ SU(2)L ⊗ U(1)Y

ℒY : yν L̄ H νR + h . c .

 conserved 
eV,   this means Yukawa coupling                                                                                                  

                                                                    difficult to measure
 only couples to Higgs

ν = νL + νR ≠ ν̄
U(1)L
mν = yν ⟨H⟩ ≈ 0.1 yν ∼ 10−12!!

⟹
νR
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Dirac vs Majorana

Majorana neutrinos:

 broken  neutrinoless double beta decay 
Allow mass term  or add  triplet                      

ν = νL + νc
L = ν̄

U(1)L ⟹ 0νββ
M ν̄c

R νR SU(2) Δ

Dirac neutrinos: 
   Introduce  to the SM ( ) allowing           

                                  
νR SU(3)C ⊗ SU(2)L ⊗ U(1)Y

ℒY : yν L̄ H νR + h . c .

 conserved 
eV,   this means Yukawa coupling                                                                                                  

                                                                    difficult to measure
 only couples to Higgs

ν = νL + νR ≠ ν̄
U(1)L
mν = yν ⟨H⟩ ≈ 0.1 yν ∼ 10−12!!

⟹
νR

 is a SM gauge singlet (1,1,0)νR
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Neutrino 
masses 

New 
Particles 

  
  CDF anomaly 
  Flavor anomalies 
  Dark Matter 

(g − 2)μ

LFV 

Dirac neutrinos test with  Neff

Majorana neutrinos test with lepton flavor violation 

Outline

Prediction requires flavor structure (  oscillations) and new physics scaleν

Radiative -models: 
         Zee Model, Extended Scotogenic Model, Flavor (LQ) Model 

ν
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Interaction Coupling

W
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7R (E
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Table 2: Re[�
3
3] ⌘ h

0
, and Re[�

2
3] ⌘ H

0

Category Model Fields Loop? Ref.

Class-I Model-I
S1(3, 1, 1/3)

!(6, 1, 2/3)
two-loop

[Babu, Leung, ‘01]

[Kohda, Sachdeva, Waite, ‘19]

Model-II
S3(3, 3, 1/3)

!(6, 1, 2/3)
two-loop [Babu, Leung, ‘01]

Class-II Model-III
S1(3, 1, 1/3)

eR2(3, 2, 1/6)

one-loop

two-loop

[Dorsner, Fajfer, Košnik, ‘17]

[Catà, Mannel, ‘19]

[Babu, Julio, ‘10]

Model-IV
S3(3, 3, 1/3)

eR2(3, 2, 1/6)
one-loop [Dorsner, Fajfer, Košnik, ‘17]

Class-III Model-V

R2(3, 2, 7/6)

S3(3, 3, 1/3)

�(3, 1, 2/3)

one-loop [Saad, AT, ‘20]

Model-VI

R2(3, 2, 7/6)

S3(3, 3, 1/3)

�(1, 4, 3/2)

one-loop
[Popov, Schmidt, White, ‘19]

[Babu, Dev, Jana, AT, ‘20]

Model-VII

S1(3, 1, 1/3)

R2(3, 2, 7/6)

⇠(3, 3, 2/3)

two-loop [Julio, Saad, AT, ‘22]

Table 3:

Present bound Future sensitivity

µ ! e� 4.2⇥ 10
�13

6⇥ 10
�14

⌧ ! e� 3.3⇥ 10
�8

9⇥ 10
�9

⌧ ! µ� 4.4⇥ 10
�8

7⇥ 10
�9

µ ! eee 1.0⇥ 10
�12 ⇠ 10

�16

⌧ ! eee 2.7⇥ 10
�8

5⇥ 10
�10

⌧ ! µµµ 2.1⇥ 10
�8

3.5⇥ 10
�10

⌧
� ! e

�
µ
+
µ
�

2.7⇥ 10
�8

4.5⇥ 10
�9

⌧
� ! µ

�
e
+
e
�

1.8⇥ 10
�8

3⇥ 10
�10

⌧
� ! e

+
µ
�
µ
�

1.7⇥ 10
�8

2.5⇥ 10
�10

⌧
� ! µ

+
e
�
e
�

1.5⇥ 10
�8

2.2⇥ 10
�10

e
�
µ
+ $ e

+
µ
�

8.3⇥ 10
�11

2⇥ 10
�14

µ $ e [Au] 7⇥ 10
�13 �

conv. [Al] � 6⇥ 10
�17

µEDM 1.9⇥ 10
�19

6⇥ 10
�23

eEDM 1.1⇥ 10
�29 ⇠ 10

�30

�a
comb
e

(2.8± 2.9)⇥ 10
�13 �
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 @ MEG,  @ Mu3e
 conversion @ Mu2e

 @ Belle II

μ → eγ μ → 3e
μ ↔ e
τ → ℓγ, τ → μℓ̄ℓ eg. LFV in 2HDM  

 

!α

!β

!γ

!σ

H

Y ∗

γσPL + YσγPR

Y ∗

αβPL + YβαPR

!α !γ !β

Y ∗

γβPL + YβγPRY ∗

αγPL + YγαPR

H

Flavor violating decays

LFV at colliders



6/10/23 Yuri Oksuzian Mu2e-II : next generation muon conversion experiment 

CLFV Schedule
Preliminary Mu2e-II scenario based on Snowmass RPF summary:
‣ CD-0 by 2028
‣ Construction 2028-2032
‣ Data 2033-2037

20

7

μ-e sector: mass reach

10 p. 5Bertrand Echenard - C altech

EFT framework

𝜿𝜿𝑫𝑫 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽𝑫𝑫 − ⁄𝝅𝝅 𝟐𝟐)

κD: relative strength of dipole vs four-
fermion operators (inspired from the 
“κ parameterization” in 1303.0497)

|κD |<< 1 dipole dominant
|κD| >> 1 four-fermion dominant

Reach on NP mass scale of past and future experiments as a function of κD

A systematic way of deriving the reach / complementarity of the main muon reactions

S . Davidson, B E , 2204.00564 

µN→ eN µ → eee µ → eγ

1e-16 (Al)

1e-18 (Al)

1e-15 (Al)

1e-16
1e-14

1e-12

7e-13 (Au)
4e-13

Upcoming experiments will probe 
NP mass scale above 104 TeV

over a large fraction of the 
parameter space

• Very high scale probed! 
Discovery opportunities in 
current and planned searches

• Notion of  ‘best probe’ is 
model-dependent

5

orders of magnitude different from the other coefficients, we also plot the reach in a parametrization similar to that
introduced in [19] by defining a variable

D = cotan(✓D � ⇡/2) . (III.1)

This non-linear transformation magnifies the regions where the dipole contribution either dominates the four-fermion
interactions (✓ = 0,⇡) or is suppressed (✓ = ⇡/2). We also define a similar variable V , that magnifies the regions
where leptonic four-fermion coefficients are much larger or smaller than those with quarks. We subtract ⇡/2 in order
to have µ ! e� larger at the centre of the plot, following [19]. However, this choice means that =0 corresponds to
both to ✓ = 0 and ✓ = ⇡, and the rates can be discontinuous at 0 while they are continuous at ±1. This can be
observed in figure 3.
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FIG. 1. Reach as a function of (left) the angle ✓D, which parametrizes the relative magnitude of dipole and four-fermion
coefficients, and (right) the variable D = cotan(✓D �⇡/2). The scale ⇤ is defined in eqn (II.1) with the coefficients normalised
according to Table II. The solid region is currently excluded.

Figure 2 displays the reach as a function of ✓V , which is effectively the angle between the µ ! eēe and µA! eA
four-fermion operators. Results for a vanishing dipole contribution (✓D = ⇡/2) shows that µ ! eēe vanishes at
✓V = ⇡/2 and µA! eA at ✓V = 0,⇡. Adding a small negative dipole coefficient, µ ! eēe doesn’t vanish anymore
since the dipole contributes independently as well as in interference with the four-fermion contributions, and the
rate is reduced when this interference is destructive. The magnitude of the negative dipole coefficient is larger for
✓D = 3⇡/4, exhibiting that µA! eA vanishes when the dipole cancels the four-fermion contributions. Similar plots
for V = cotan(✓V � ⇡/2) are shown in Figure 3.

Figure 4 illustrates the complementarity of heavy and light targets for µA!eA, by plotting the conversion ratios
as function of ~C · ~eAlight / sin� and ~C · ~eAheavy? / cos�. Recall that ~C · ~eAheavy? parametrizes the independent
information obtained with Au. This additional contribution to µAu ! eLAu causes the rate to vanish at a different
value than that of the light targets. The dipole, which also contributes to µA ! eA, was taken to either vanish
(✓D = ⇡/2), be positive (✓D = 3⇡/4) or negative (✓D = ⇡/4). This illustrates the impact of ~C · ~eD on the rate:
cancellations can occur among the dipole and four-fermion contributions, as well as between the two independent
combinations of four-fermion coefficients.

Finally, the dependence of the sensitivity on the angle � and the variable D is exhibited in Figure 5. As expected,
the µ ! e� and µ ! eēe processes are independent of �. The shape of the conversion processes on light and heavy
targets are globally similar, although the ridges along which the rates cancel are slightly different.

Davidson-Echenard 2204.00564

• Sensitivity is dominated by low-energy muon decay / conversion 

p. 45Bertrand Echenard - C altech

CLFV in EFT

S . Davidson, B E , 2204.00564 

µN→ eN µ → eee µ → eγ

1e-16 (Al)

1e-18 (Al)

1e-15 (Al)

1e-16

1e-14

1e-12

7e-13 (Au)

4e-13

θD angle between the dipole and four-fermion type of operators
θV angle between four-fermion operators on leptons or quarks

Reach on NP mass scale of past and future experiments

θS angle between scalar and vector operators for µ→ e e e
φ angle between “light: and “heavy” operators in µN→ e N conversion

CLFV can prove masses  
TeV. Strongest constraints on many 
models.  

Mu2e will improve the current limit 
on conversion rate  by four 
orders of magnitude. 

𝒪(103 − 104)

Rμe

ACE Workshop, ‘23



COFI, May 2018 Julian Heeck (ULB) - LFV 6

Neutrino mass  charged LFV?⇒

● SM + Dirac neutrinos: 

● All CLFV is GIM suppressed:

[Petcov ‘77; Cheng & Li ‘77]

8

Neutrino Oscillation  Flavor Violation  ⟹

Dirac neutrinos:   ℒY : yν L̄ H νR + h . c .

 eV
Suppressed by Dirac mass,  
mν = yν ⟨H⟩ ≈ 0.1

mν A(ℓα → ℓβγ) ∝
m2

ν

m2
W

< 10−24!!



COFI, May 2018 Julian Heeck (ULB) - LFV 6

Neutrino mass  charged LFV?⇒

● SM + Dirac neutrinos: 

● All CLFV is GIM suppressed:

[Petcov ‘77; Cheng & Li ‘77]
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Neutrino Oscillation  Flavor Violation  ⟹

Dirac neutrinos:   ℒY : yν L̄ H νR + h . c .

 eV
Suppressed by Dirac mass,  
mν = yν ⟨H⟩ ≈ 0.1

mν A(ℓα → ℓβγ) ∝
m2

ν

m2
W

< 10−24!!

Seesaw mass: -mass is induced via Weinberg’s dim-5 operator ν

ν N N ν

〈φ〉〈φ〉

Type I / Type III : mν ∼ m2
D /MR

ℒY : 1/2 MRNc
RNR + mDνLNR + h . c .

Structure in  can give large effect  
A(ℓα → ℓβγ) ∝ (mDM−2

R m†
D)αβ ≃ mν /MR

mD



COFI, May 2018 Julian Heeck (ULB) - LFV 6

Neutrino mass  charged LFV?⇒

● SM + Dirac neutrinos: 

● All CLFV is GIM suppressed:

[Petcov ‘77; Cheng & Li ‘77]
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Neutrino Oscillation  Flavor Violation  ⟹

Dirac neutrinos:   ℒY : yν L̄ H νR + h . c .

 eV
Suppressed by Dirac mass,  
mν = yν ⟨H⟩ ≈ 0.1

mν A(ℓα → ℓβγ) ∝
m2

ν

m2
W

< 10−24!!

Seesaw mass: -mass is induced via Weinberg’s dim-5 operator ν

ν N N ν

〈φ〉〈φ〉

Type I / Type III : mν ∼ m2
D /MR

ℒY : 1/2 MRNc
RNR + mDνLNR + h . c .

Structure in  can give large effect  
A(ℓα → ℓβγ) ∝ (mDM−2

R m†
D)αβ ≃ mν /MR

mD

ℒ : yL̄cΔL + μHΔH + h . c .

ν ν

∆

〈φ〉〈φ〉

Type II : mν ≃ y⟨Δ⟩

Prediction of LFV ratios via   
BR(τ → μγ) ≃ 23BR(τ → eγ) ≃ 3.5BR(μ → eγ)

mν



What about radiative neutrino mass models? 

— Each loop has  suppression

— Can tie to explain anomalies 

1/(16π2)

Prediction for LFV ?

 , dark matter,  anomalies, … that fixes new 
physics scale.    
(g − 2)μ B

9

         Zee Model, Extended Scotogenic Model, Flavor (LQ) Model 



〈H0
1〉

H+
2η+

νi lk lck νj

10

Radiative  mass generation ν
Neutrino masses are zero at tree level:  may be absent

Small, finite masses are generated as quantum corrections

Typically involves exchange of two scalars leading to lepton number violation
                                                                                Majorana Masses 

 Simple realization: Zee Model, which has a second Higgs doublet and a 

charged singlet

νR

⟹

Smallness of neutrino mass is explained via loop and chiral suppression 
New physics in this framework may lie at the TeV scale; if connected to 

  Prediction for LFV(g − 2)μ ⟹

    H1(1,2,1/2) =
G+

1

2
(v + h + iG0)

H2(1,2,1/2) =
H+

1

2
(H + iA)

η+(1,1,1)

     



f =

0 feμ feτ

−feμ 0 fμτ

−feτ −fμτ 0
Y =

Yee Yeμ Yeτ

Yμe Yμμ Yμτ

Yeτ Yτμ Yττ
                   

Mν = κ (fMℓY + YT Mℓ fT)
κ =

1
16π2

sin 2ϕ log ( m2
h+

m2
H+ )

Zee Model

Gauge symmetry is same as the Standard Model

〈H0
1〉

H+
2η+

νi lk lck νj

−ℒ : L̄cfLη+ + ℓ̄ỸLH̃1 + ℓ̄YLH̃2 − μH1H2η−

If , which happens with a  , then the model is ruled out Y ∝ Mℓ Z2
[Wolfenstein ’80]

11



f =

0 feμ feτ

−feμ 0 fμτ

−feτ −fμτ 0
Y =

Yee Yeμ Yeτ

Yμe Yμμ Yμτ

Yeτ Yτμ Yττ
                   

Mν = κ (fMℓY + YT Mℓ fT)
κ =

1
16π2

sin 2ϕ log ( m2
h+

m2
H+ )

Zee Model

Gauge symmetry is same as the Standard Model

〈H0
1〉

H+
2η+

νi lk lck νj

−ℒ : L̄cfLη+ + ℓ̄ỸLH̃1 + ℓ̄YLH̃2 − μH1H2η−

If , which happens with a  , then the model is ruled out Y ∝ Mℓ Z2
[Wolfenstein ’80]

Z ≡

−
Mν

eτ

feτ
0 −

Mν
ττ

2feτ

0
feμMν

ττ − 2feτMν
μτ

2feτ fμτ
0

Mν
ee

2feτ

Mν
μμ

2fμτ
0

Q ≡

2q4 −
fμτ

feτ
q1

fμτ

feτ
(q4 − q2) −

2fμτ

feμ
q4 −

fμτ

feτ
q3

q1 q2 + q4
2feτ

feμ
q4 + q3

−
feμ

feτ
q1

feμ

feτ
(q4 − q2) −

feμ

feτ
q3

General Parameterization to solve for  :Mν Y = κ−1M−1
ℓ (Z + Q)

[Pleitez, et al. ’17]

                  
           

|q1 | < 4πmμκ |q2 | < 4π | feτ /fμτ |meκ + π | feμ/feτ |mμκ + πmτκ
|q3 | < 4π | feτ /feμ |mτ |q4 | < π | feμ/feτ |mμκ + πmτκ11
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Zee Model prediction for LFV 

   number are violated 
Second Higgs to explain   Prediction for LFV
νaL ↔ νbL ⟹ e, μ, τ

(g − 2)μ ⟹
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Zee Model prediction for LFV 

   number are violated 
Second Higgs to explain   Prediction for LFV
νaL ↔ νbL ⟹ e, μ, τ

(g − 2)μ ⟹

4

B. General Parametrization

In order to e�ciently study the Zee-model parameter
space, we use the parametrization from Ref. [64] to solve
Eq. (4) for the Yukawa matrix Y as

Y = 
�1

M
�1
`

(Z +Q) , (14)

Z ⌘

0

BB@

�
M

⌫
e⌧

fe⌧
0 �

M
⌫
⌧⌧

2fe⌧

0
feµM

⌫
⌧⌧�2fe⌧M

⌫
µ⌧

2fe⌧fµ⌧
0

M
⌫
ee

2fe⌧

M
⌫
µµ

2fµ⌧
0

1

CCA , (15)

Q ⌘

0

B@
2q4 �

fµ⌧

fe⌧
q1

fµ⌧

fe⌧
(q4 � q2) �

2fµ⌧

feµ
q4 �

fµ⌧

fe⌧
q3

q1 q2 + q4
2fe⌧
feµ

q4 + q3

�
feµ

fe⌧
q1

feµ

fe⌧
(q4 � q2) �

feµ

fe⌧
q3

1

CA .

(16)

assuming the three (complex) entries of f to be nonzero;
one entry of f is fixed by the constraint equation

0 = f
2
µ⌧
M

⌫

ee
� 2fe⌧fµ⌧M

⌫

eµ
+ 2feµfµ⌧M

⌫

e⌧

+ f
2
e⌧
M

⌫

µµ
� 2feµfe⌧M

⌫

µ⌧
+ f

2
eµ
M

⌫

⌧⌧
.

(17)

Q drops out of the neutrino mass formula and contains
four complex parameters qj . It is straightforward to
show that the so-defined Y indeed satisfies the M⌫ equa-
tion (4) and contains the correct number of free parame-
ters [64]. This parametrization is convenient as it allows
us to use the known neutrino parameters as input and
is far simpler than other expressions put forward in the
literature [65].

C. Muonphilic textures

In Sec. III A we have argued that a resolution of aµ
without LFV is impossible within the Zee model. The
parametrization from above allows us to easily study tex-
tures that explain aµ and still suppress LFV su�ciently.
We aim to find muonphilic Yukawa textures, i.e. those
with a large Yµµ entry, as this will lead to a large aµ

contribution by the neutral scalars A and H [11]. A
large Yµµ immediately requires highly suppressed Yeµ and
Yµe in order to suppress µ ! e� and µ ! 3e. This
can be achieved via q1 = 0 and q4 = q2 in the general
parametrization.
The remaining q2 and q3 can be used to set two more

entries of Y to zero, e.g. Yee = Ye⌧ = 0, leading to Y =

0

BB@

0 0 0

0
2fµ⌧M

⌫
e⌧�2fe⌧M

⌫
µ⌧+feµM

⌫
⌧⌧

2fe⌧fµ⌧mµ
�

M
⌫
⌧⌧

2fµ⌧mµ

M
⌫
ee

2fe⌧m⌧

M
⌫
µµ

2fµ⌧m⌧

2fµ⌧M
⌫
e⌧+feµM

⌫
⌧⌧

2fe⌧fµ⌧m⌧

1

CCA .

(18)

Interestingly, the limitM⌫

ee
! 0 leads to electron-number

conservation, at least through the Y interactions. This
automatically eliminates all muonic LFV, which pose the

texture zero ordering
P

j mj/meV hm��i/meV

Mee = 0 normal 2 [60, 65] 0

Mee = 0 inverted – –

Mµµ = 0 normal > 150 > 41

Mµµ = 0 inverted > 98 > 15

TABLE II: Predictions for the sum of neutrino masses
P

j mj

and the e↵ective 0⌫�� Majorana neutrino mass hm��i from
the texture zeros Mee = 0 and Mµµ = 0, using the 3� ranges
for the oscillation parameters from Ref. [66].

most serious threat to an explanation of aµ. It is not suf-
ficient though, as tauonic LFV is generically too large as
well. However, even the remaining o↵-diagonal entries of
Y , which lead to the LFV decays ⌧ ! 3µ and ⌧ ! µ�,
can be suppressed by taking fe⌧ ⌧ fµ⌧ . In this limit, Yµµ

is the dominant entry, Y⌧⌧ ' Yµµmµ/m⌧ is the second-
largest entry, and Y⌧µ,µ⌧ are suppressed. For this partic-
ular texture, aµ can be explained without testable LFV,
even in future experiments. We stress that this relied
on M

⌫

ee
= 0, which constitutes a testable prediction in

the neutrino sector: the absence of 0⌫�� [2], and normal
hierarchy for the neutrino mass spectrum (see Tab. II).

Instead of using q2 and q3 to eliminate Yee and Ye⌧ ,
one can set Yµ⌧ = 0 via q3 = �2fe⌧q2/feµ, which gives
the texture Y =
0

BB@

�M
⌫
e⌧+2q2fe⌧
mefe⌧

0 �
M

⌫
⌧⌧

2fe⌧me

0
�2fe⌧M

⌫
µ⌧+feµM

⌫
⌧⌧+4fe⌧fµ⌧q2

2fe⌧fµ⌧mµ
0

M
⌫
ee

2fe⌧m⌧

M
⌫
µµ

2fµ⌧m⌧

2q2
m⌧

1

CCA .

(19)

Here, dangerous muonic LFV can be evaded by requiring
M

⌫

µµ
= 0, which leads to a muon-number conserving Y .

Once again this would not be su�cient; tauonic LFV
have to be suppressed via the hierarchy fµ⌧ ⌧ fe⌧ . q2

has to be small as well, extreme cases include q2 = 0
(which gives Y⌧⌧ = 0) and q2 = M

⌫

e⌧
/2fe⌧ (which gives

Yee = 0). The above texture makes it possible to explain
aµ while suppressing LFV below future sensitivities, but
hinges on M

⌫

µµ
= 0, which is again a testable prediction

in the neutrino sector, as shown in Tab. II.

IV. NUMERICAL ANALYSIS

With all relevant observables at our disposal we can
numerically explore the Zee-model parameter space that
explains aµ (and CDF) to find LFV predictions. The
parametrization from Eq. (14) allows us to use neutrino
data as an input; we take the 3� ranges of the oscillation
parameters from the global fit [66], distinguishing be-
tween normal and inverted ordering. As an upper bound
on the absolute neutrino mass we use 0.8 eV [67].

We scan over two fij = [10�15
,
p
4⇡] – the third one be-

ing determined by Eq. (17) – and |qi| = [10�25
, Max|qi|],

while keeping the phases arbitrary and demanding the
Yukawa couplings to remain perturbative. The conserva-
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FIG. 6: Br(µ → eγ) and Br(µ → 3e) as a function of ξ = (mN/mη+)2. A degenerate right-handed neutrino

spectrum has been assumed, see text for details. To the left for NH, whereas to the right for IH. The

horizontal dashed lines show the current upper bounds.

Since the photonic dipole operators contribute to both observables, the only way to obtain

Rµe > 1 is to have dominant contributions from box and/or photonic non-dipole diagrams in

µ → 3e (Z-penguins are suppressed by charged leptons and thus their contribution is always

negligible). Since the photonic non-dipole diagrams, given by the AND form factor, never exceed

the dipole ones as much as to compensate the large factor that multiplies |AD|2 in the branching

ratio formula (see Eq. (22)), they are never dominant. We are therefore left with a competition

between photonic dipole operators and box diagrams.

Assuming box dominance in µ → 3e and a degenerate right-handed neutrino spectrum one can

estimate

Rµe ∼
y4

48π2e2
H(ξ), (31)

where y is the average size of the Yukawa coupling and the function H(ξ) is defined as

H(ξ) =

(

1
2D1(ξ, ξ) + ξD2(ξ, ξ)

F2(ξ)

)2

. (32)

The function H(ξ) is shown in Fig. 5. Notice the cancellation for ξ = 1. This pole is caused by

an exact cancellation between the contributions from the loop functions D1 and D2. However, for

ξ # 1 and ξ $ 1 one always has H(ξ) > 1.

It is clear from Eq. (31) and Fig. 5 that in order to increase the value of Rµe one requires

large Yukawa couplings and a large mass difference between the right-handed neutrinos and the η

scalars (in order to be far from ξ = 1). This is illustrated in Fig. 6, where we show Br(µ → eγ)

(blue) and Br(µ → 3e) (red) as a function of ξ = (mN/mη+)
2. The horizontal dashed lines

current limit

future sensitivity

Toma, Vicente ’14
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FIG. 2: Penguin contributions to #α → 3 #β. The wavy line represents either a photon or a Z-boson.

where the ξi parameters are defined as ξi ≡ m2
Ni
/m2

η+ and the loop function F2(x) is given in

appendix A. Finally, the branching fraction for #α → #βγ is calculated as

Br (#α → #βγ) =
3(4π)3αem

4G2
F

|AD|2Br (#α → #βνανβ) , (14)

where GF is the Fermi constant.

B. #α → 3 #β

Next we consider the process #α → 3 #β (more precisely denoted as #α → #β #̄β#β). Although

this has attracted less attention, important projects are going to be launched in the near future,

with the Mu3e experiment as the leading one. There are four types of 1-loop diagrams that

contribute to #α → 3 #β . These are γ-penguins, Z-penguins, Higgs-penguins and box diagrams. In

our computations we did not consider Higgs-penguins, since we are mostly interested in processes

involving the first two charged lepton generations, whose small Yukawa couplings suppress Higgs

contributions. Notice that this assumption would not be valid for LFV processes involving τ

leptons. However, the experimental limits in this case are not as stringent as those found for

processes involving the first two generations, and thus their consideration would not change the

phenomenological picture.

Let us consider the momentum assignment #α(p) → #β(k1)#̄β(k2)#β(k3). Then, the γ-penguin

diagrams shown in Fig. 2 lead to the amplitude5

iMγ = ie2AND ū(k1)γ
µPLu(p)ū(k3)γµv(k2)

+ie2
mα

q2
AD ū(k1)σ

µνqνPRu(p)ū(k3)γµv(k2)− (k1 ↔ k3), (15)

5 In the presentation of our results we will follow a notation inspired by [43], which improved on [44].

Most parameters are probed but still 
difficult to have firm prediction!
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FIG. 3: Box contributions to #α → 3 #β.

where q ≡ k1 − p is the photon momentum. Other operators turn out to be suppressed by charged

lepton masses and thus they are neglected in Eq. (15). The coefficient AD was given in Eq. (13),

whereas the coefficient AND, which corresponds to the photonic non-dipole contributions, is given

by

AND =
3
∑

i=1

y∗iβyiα

6(4π)2
1

m2
η+

G2 (ξi) , (16)

where the loop function G2(x) is given in appendix A.

Similarly, we now consider the contributions from Z-penguin diagrams, also shown in Fig. 2.

Neglecting sub-dominant terms proportional to q2, q being the 4-momentum of the Z-boson, the

resulting amplitude can be written as

iMZ =
iF

m2
Z

ū(k1)γ
µPRu(p)ū(k3)γµ

(

g$LPL + g$RPR

)

v(k2)− (k1 ↔ k3) , (17)

where

g$L =
g2

cos θW

(

1

2
− sin2 θW

)

, g$R = −
g2

cos θW
sin2 θW , (18)

are the tree-level Z-boson couplings to a pair of charged leptons. Here g2 is the SU(2)L gauge

coupling and θW is the weak mixing angle. The coefficient F is given by

F =
3
∑

i=1

y∗iβyiα

2(4π)2
mαmβ

m2
η+

g2
cos θW

F2 (ξi) . (19)

Equation (19) shows that Z-penguins are suppressed by the charged lepton masses mα and mβ.

Therefore, although we fully derived and included them in our computation, we found that they

always have negligible contributions to the LFV processes considered in this paper. For this

reason, the total decay width for #α → 3 #β will be mainly given by the γ-penguins and the box

contributions, whose relative size will determine the phenomenology.

η(1,2,1/2,−) = (η+

η0)
N(1,1,0,−)
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Figure 1: One-loop penguin diagrams for fermionic singlet DM scattering o↵ nuclei. They are

generated with up to two heavy particles from a dark sector (a scalar S and a fermion F ). The

photon and Z boson are coupled to the new fermion (left diagram) or the new scalar (right

diagram). For minimal models with one fermion the Higgs boson h only couples to the scalar S,

but SM fermions in the loop also lead to a Higgs penguin diagram where the SM Higgs boson is

attached to the fermion line. The possible quantum numbers of the dark particles are given in

Tab. 1.

tree-level contributions to the DD cross section. The lowest order scattering o↵ nuclei occurs at

one-loop order via the penguin diagrams in Fig. 1, with a dark fermion F and a dark scalar S

running in the loop. We assume that the new particles are color singlets, so that there are no

flavor changing neutral currents in the quark sector, and there are only weak limits from direct

production at the Large Hadron Collider (LHC). In this way box-diagram contributions to the

scattering amplitude are absent. Our main goal is to study analytically the di↵erent contributions

to the DM-nucleus scattering, as well as to outline possible simplified models, including those

with SM fields. In addition we analyze the current limits from DD, as well as constraints coming

from the relic abundance, lepton flavor violation (LFV) and anomalous magnetic dipole moments

(AMMs).1

The paper is structured as follows: In Sec. 2 we study the UV completions of the fermionic DM

scenario including models with SM particles in the loop. In order to fix the notation we review in

Sec. 3 the relevant e↵ective operators for DD at the quark level and also their non-relativistic (NR)

versions at the nucleon level. In Sec. 4 we derive analytical expressions for the Wilson coe�cients

and provide compact expressions in certain limits. In Sec. 5 we perform a numerical analysis

of the phenomenology relevant for DD. First we show some numerical examples for the Wilson

coe�cients at the quark and nucleon level (the latter in their NR version). Afterwards we derive

the current limits on the model parameters and discuss future expected sensitivity. We also discuss

limits from LFV processes for models in which DM is directly coupled to SM leptons. Sections 4

and 5 contain the main results of this paper. We discuss other phenomenological aspects of the

proposed scenario, such as the DM relic abundance, invisible decays and searches at colliders in

Sec. 6. Finally we present our conclusions in Sec. 7.

The manuscript also includes several appendices with technical details. The generalization to

larger symmetry groups in the dark sector is presented in App. A. In App. B we show a compact

expression for the di↵erential cross section in order to make contact with the literature and we

1
In our scenario leptonic electric dipole moments appear only at two-loop order and are therefore suppressed.

3

The lightest of the right-handed neutrinos 
is the fermionic DM candidate.
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Prediction for LFV 
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Neutrino mass model to resolve -anomalies [  or  ]

The same  and  LQ also induce muon 

Flavor structure is very constrained

Framework can be tested at LHC as well as in processes such as 

B R2 (3,2,7/6) S1(3̄,1,1/3)

R2 S1 (g − 2)μ

τ → eγ

[Julio, Saad, Thapa, ’20]  

γ

"L uR uL "R
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νL uR uL dL νL
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ξ2/3 ξ−1/3

S1/3

〈H0〉
〈H0〉〈H0〉

ℒY = fLuRR2L + fRQR2ℓR

+yLQcLS1 + yRuc
RS1ℓR



Neutrino 
masses 

New 
Particles 

  
  CDF anomaly 
  Flavor anomalies 
  Dark Matter 

(g − 2)μ

LFV 

Dirac neutrinos test with  Neff

Majorana neutrinos test with lepton flavor violation 

Outline

Prediction requires flavor structure (  oscillations) and new physics scaleν

Radiative -models: 
         Zee Model, Extended Scotogenic Model, Flavor (LQ) Model 

ν
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Neutrinos may well be Dirac particles   

Oscillation experiments cannot distinguish Dirac neutrinos from 
Majorana neutrinos  

If Dirac nature  important to understand the smallness of 
their masses

Dirac leptogenesis to explain observed baryon asymmetry is an 
attractive feature

Dirac seesaw can be achieved in Mirror Models

⟹ ΔL = 0

⟹

[Dick, Lindner, Ratz, Wrig, ’99]  

[Lee, Yang ‘56; Foot, Volkas ‘95; Berezhiani, Mohapatra ‘95, Silagadze ’97]



Dirac Neutrinos from Left-Right Symmetry
SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L
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Dirac Neutrinos from Left-Right Symmetry

Fermion Representation:          

          

QL(3,2,1,1/3) = (u
d)L

QR(3,1,2,1/3) = (u
d)R

ψL(1,2,1, − 1) = (ν
e)L

ψR(1,1,2, − 1) = (ν
e)R

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L
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Fermion Representation:          

          

QL(3,2,1,1/3) = (u
d)L

QR(3,1,2,1/3) = (u
d)R

ψL(1,2,1, − 1) = (ν
e)L

ψR(1,1,2, − 1) = (ν
e)R

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

Vector-like fermion introduced to realize “universal seesaw” for charged 
fermion masses

P(3,1,1,4/3), N(3,1,1, − 2/3), E(1,1,1, − 2)

mui
≈

y2
ui
κLκR

MP0
i

, mdi
≈

y2
di
κLκR

MN0
i

, mℓi
≈

y2
ℓi

κLκR

ME0
i

[ Davidson, Wali ’87]

                     Mu = (
0 yu κL

y†
u κR MP0 ) Md = (

0 yd κL

y†
d κR MN0 ) Mℓ = (

0 yℓ κL

y†
ℓ κR ME0 )
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Fermion Representation:          
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ψL(1,2,1, − 1) = (ν
e)L

ψR(1,1,2, − 1) = (ν
e)R

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

Vector-like fermion introduced to realize “universal seesaw” for charged 
fermion masses

P(3,1,1,4/3), N(3,1,1, − 2/3), E(1,1,1, − 2)

Higgs Representation:           χL(1,2,1,1) = (
χ+

L

χ0
L )

L

χR(1,2,1,1) = (
χ+

R

χ0
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Higgs sector is very simple:  

  mixing is absent at tree-level

 mixing is induced at the loop level, which in turn induces 
two-loop Dirac masses for neutrino 

χL(1,2,1,1) + χR(1,1,2,1)

W+
L ↔ W+

R

W+
L ↔ W+

R
[Babu, He ’89]
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α

4π sin2 θW
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[Babu, He ’89]

24 [Babu, He, Su, Thapa ’22]



Testing Dirac Neutrinos with  Neff

CMB is sensitive to extra radiation density arising from new extra 
degrees of freedom that were in thermal equilibrium with the SM 
plasma

 (ultra-light new particles, new degrees of freedom) couples to other 
particles and are produced in the early universe and contribute to 
additional radiation density in early universe !

The effect of such light particles is parameterized as  and is 
measured in units of extra neutrino degrees of freedom

Dirac neutrino modes of this type will modify  by about 0.14

νR

ΔNeff

Neff

ΔNeff ≃ 0.027 ( 106.75
g⋆ (Tdec) )

4/3

geff

geff = (7/8) × (2) × (3) = 21/4
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Dirac Neutrino in cosmology 

CMB-S4

Planck+BAO
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ν L
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Valid for 3   in thermal 
equilibrium with SM

This gives strong constraint 
for any (eg. LR model) 
Dirac neutrino mass model

Neff ≃ 3

ΔNeff

νR

0.14

[Heeck, Abazajian ’19; Babu, He, Su, Thapa ’22 ]

26



Dirac Neutrino in cosmology 

CMB-S4

Planck+BAO

SPT-3G/SO

Q
CD

ν L
-d
ec

10-4 10-3 10-2 10-1 100 101 102 103 104 105
0.05

0.10

0.50

1

5

10

νR decoupling temperature Tdec [GeV]

Δ
N
ef
f

101 102 103 104 105 106 107 108
WR Mass [GeV]

0.14

[Heeck, Abazajian ’19; Babu, He, Su, Thapa ’22 ]

26 Can we embed LR model into GUT ?

In SM 

Improvement on  in 
CMB-S4

Valid for 3  were in 
thermal equilibrium with 
SM

This gives strong constraint 
for any (eg. LR model) 
Dirac neutrino mass model

Neff ≃ 3

ΔNeff

νR



Embedding in SU(5)L × SU(5)R

The fermion spectrum of the model has a natural embedding in 
 unification

All left-handed (right-handed) fermions of the SM fit into  of 
  ( )

The remaining vector-like quarks and leptons fill rest of the multiples

SU(5)L × SU(5)R

10 + 5̄
SU(5)L SU(5)R

FL,R =

Dc
1

Dc
2

Dc
3

e
−ν L,R

TL,R =
1

2

0 Uc
3 −Uc

2 u1 d1

−Uc
3 0 Uc

1 u2 d2

Uc
2 −Uc

1 0 u3 d3

−u1 −u2 −u3 0 Ec

−d1 −d2 −d3 −Ec 0
L,R
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1 u2 d2
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ψL,R

N P QL,R

E
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The evolution of the gauge couplings constants at one-loop level are 
governed by the following RGEs

Gauge coupling Unification

αi = g2
i /4π

At  (top quark mass): mt

g1 = 0.3583 , g2 = 0.64779 , g3 = 1.1666

With the SM particles, we obtain following beta function coefficients 
with properly normalized gauge couplings:

b1 =
41
26

, b2 = −
19
6

, b3 = −
7
2

 group can directly break to the SM gauge group, where 
 meet at a single value 

SU(5) × SU(5)
g1, g2, g3

⟹ sin2 θW = 3/16
⟹ Cannot reconcile value measured at 

electroweak scale

                 α−1
i (μ) = α−1

i (μ0) −
bi

2π
ln(μ/μ0)

                   αGUT = 2 α3 = α2 =
13
3

α1
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Add  fields at scale M(8,3,0)F + 2 (3,2, − 5/6)S

b1 =
173
78

, b2 =
17
2

, b3 =
−1
6

 GeV  MGUT = 9.50 × 1015

αGUT = 0.078
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Add  fields at scale M(8,3,0)F + 2 (3,2, − 5/6)S

b1 =
173
78

, b2 =
17
2

, b3 =
−1
6

 GeV  MGUT = 9.50 × 1015

αGUT = 0.078

Not the only breaking chain; some have many attractive features  
predicts Dirac neutrinos, firm prediction on oscillation parameters, and 
can solve strong CP problem.    

⟹

[Babu, Mohapatra, Thapa, in preparation]  
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More on Dirac Neutrinos: Dirac Leptogenesis 

Dirac neutrinos:       Higgs coupling strength      
 too feeble to ever thermalize  in the early universe  Dirac 

Leptogenesis  matter/antimatter asymmetry 

yν L̄ H νR ⟹ yν ∼ 10−12!!
⟹ νR ⟹

⟹ [Dick, Lindner, Ratz, Wrig, ‘009]  



2

Case SU(3)⇥ SU(2)⇥ U(1) spin gX (B � L)(X) Relevant Lagrangian terms that induce X decay "wave "vertex �B

a (1,1,�1) 0 1 �2 ⌫ReRX̄, LLX̄ 3 7 0

b (1,2, 1/2) 0 2 0 H̄X, ⌫̄RLX, L̄eRX, Q̄LdRX, ūRQLX, X
†
H

†
HH 3 3or 7 0

c (3,1,�1/3) 0 3 �2/3 dR⌫RX
†
, uReRX

†
, QLLX

†
, uRdRX, QLQLX 3 3or 7 0 or 1

d (3,1, 2/3) 0 3 �2/3 uR⌫RX
†
, dRdRX 3 7 1

e (3,2, 1/6) 0 6 4/3 Q̄L⌫RX, d̄RLX 3 7 0

f (1,2,�1/2) 1/2 2 �1 X̄L, ⌫̄RXH, X̄eRH 3 3 0

TABLE I: Quantum numbers for particle X whose decay gives Dirac leptogenesis. "wave and "vertex indicate one-loop contri-
butions from wave-function and vertex renormalization. Case c and d can lead to �B = 1 proton decay (last column).

B � LSM asymmetry into a baryon asymmetry [10, 16]

Y�B =
28

79
Y�(B�LSM) =

28

79
Y�⌫R ' 10�3gX"⌘ , (2)

where in the last equation we have assumed only the SM
degrees of freedom, g? = 106.75, as we will in all numer-
ical examples. To obtain the measured baryon asymme-
try [9, 17] we thus need gX"⌘ ⇠ 10�7. In cases c and d, X
decays can directly produce a baryon asymmetry and can
be e↵ective after sphaleron freeze out; the factor 28/79
then needs to be dropped and no �LSM is generated.

With CP asymmetry " simply generated at one loop
in all cases, the only quantity left to calculate is the e�-
ciency ⌘. From Tab. I it is clear that in addition to the
desired decay channels, X unavoidably also has gauge
interactions, which can quickly deplete the number of X
at temperatures T < MX . Naively, this makes it more
complicated to generate the baryon asymmetry since it
suppresses ⌘. However, in complete analogy to scalar-
triplet leptogenesis [18] there are ways to have e�cient
leptogenesis here, as long as at least some of the inverse
decay reactions are out of equilibrium. Depending on the
hierarchy of rates, di↵erent predictions for Ne↵ emerge:

(I) If all decay rates of X are out of equilibrium, we
have to rely on gauge interactions to produce X,
assuming zero initial abundance. Once these scat-
terings freeze out, the remaining X eventually de-
cay perfectly out of equilibrium at a temperature
T ⌧ MX . The ⌫R created in this decay then have a
large momentum compared to the SM temperature
and thus a potentially large contribution to Ne↵,
reminiscent of the superWIMP mechanism [19].
This novel observation severely restricts this region
of parameter space.

(II) If the decay rates involving ⌫R are in equilibrium
but the other ones are not, a large ⌘ can be achieved
in complete analogy to scalar-triplet leptogenesis.
Here, the ⌫R are thermalized at T ⇠ MX , yielding

�Ne↵ ' 0.14 (106.75/g?(MX))4/3 , (3)

an amount testable by CMB-S4 [20] unless g?(MX)
far exceeds the SM amount [12]. This is the same

contribution as in the �L = 4 Dirac-leptogenesis
mechanism of Ref. [21].

(III) If the decay rates involving ⌫R are out of equilib-
rium but the other ones are not, we have e�cient
asymmetry generation with only a small amount
of ⌫R generated through freeze-in with typical mo-
menta p ⇠ 2.5T [22]. Here, �Ne↵ can be unob-
servably small since both abundance and momenta
of ⌫R are small. This freeze-in Dirac leptogenesis
technically di↵ers from the namesake setup of [23].

The above cases allow for large ⌘. Moving away from
these extreme cases lowers ⌘ and often pushes �Ne↵

closer to the thermal value of Eq. (3). The interactions
and decays of the heavier X copies – required to exist
for non-zero " – will further increase �Ne↵ without con-
tributing to the asymmetry. Even case (III) could there-
fore generate a testable �Ne↵ unless the ⌫R couplings of
all X are suppressed.
Below we quantify the above points for case a, ar-

guably the simplest version of Dirac leptogenesis. The
other cases give qualitatively similar phenomenology, ex-
cept for the leptoquark cases c and d, which are discussed
in more detail towards the end.

A SIMPLE MODEL

As a simple model that realizes Dirac leptogenesis we
introduce two electrically charged scalars X1,2 ⌘ X�

1,2 to
the SM (case a from Tab. I), in addition to the three
right-handed neutrinos necessary to form Dirac neutri-
nos. The Yukawa couplings of ⌫R with the Higgs are mi-
nuscule and play no role in the following. The relevant
interactions of the charged scalars are

L = 1
2 L̄

cFiL X̄i + ēcGi⌫RX̄i + h.c. , (4)

assuming, without loss of generality, that theXi are mass
eigenstates. The matrices F1,2 are antisymmetric in their
flavor indices due to the antisymmetry of the SU(2) sin-
glet contraction L̄c

↵L� = ēc↵⌫L,� � ēc�⌫L,↵. The Gi are
arbitrary complex Yukawa matrices. Total lepton num-
ber is conserved by assigning L(Xi) = 2, but, more im-

Idea: Take a new heavy particle X that decay out of equilibrium into a 
non-thermal  and a SM particle. νR

Simple models:

[Heeck, Heisig, Thapa, ’23]
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where in the last equation we have assumed only the SM
degrees of freedom, g? = 106.75, as we will in all numer-
ical examples. To obtain the measured baryon asymme-
try [9, 17] we thus need gX"⌘ ⇠ 10�7. In cases c and d, X
decays can directly produce a baryon asymmetry and can
be e↵ective after sphaleron freeze out; the factor 28/79
then needs to be dropped and no �LSM is generated.

With CP asymmetry " simply generated at one loop
in all cases, the only quantity left to calculate is the e�-
ciency ⌘. From Tab. I it is clear that in addition to the
desired decay channels, X unavoidably also has gauge
interactions, which can quickly deplete the number of X
at temperatures T < MX . Naively, this makes it more
complicated to generate the baryon asymmetry since it
suppresses ⌘. However, in complete analogy to scalar-
triplet leptogenesis [18] there are ways to have e�cient
leptogenesis here, as long as at least some of the inverse
decay reactions are out of equilibrium. Depending on the
hierarchy of rates, di↵erent predictions for Ne↵ emerge:

(I) If all decay rates of X are out of equilibrium, we
have to rely on gauge interactions to produce X,
assuming zero initial abundance. Once these scat-
terings freeze out, the remaining X eventually de-
cay perfectly out of equilibrium at a temperature
T ⌧ MX . The ⌫R created in this decay then have a
large momentum compared to the SM temperature
and thus a potentially large contribution to Ne↵,
reminiscent of the superWIMP mechanism [19].
This novel observation severely restricts this region
of parameter space.

(II) If the decay rates involving ⌫R are in equilibrium
but the other ones are not, a large ⌘ can be achieved
in complete analogy to scalar-triplet leptogenesis.
Here, the ⌫R are thermalized at T ⇠ MX , yielding

�Ne↵ ' 0.14 (106.75/g?(MX))4/3 , (3)

an amount testable by CMB-S4 [20] unless g?(MX)
far exceeds the SM amount [12]. This is the same

contribution as in the �L = 4 Dirac-leptogenesis
mechanism of Ref. [21].

(III) If the decay rates involving ⌫R are out of equilib-
rium but the other ones are not, we have e�cient
asymmetry generation with only a small amount
of ⌫R generated through freeze-in with typical mo-
menta p ⇠ 2.5T [22]. Here, �Ne↵ can be unob-
servably small since both abundance and momenta
of ⌫R are small. This freeze-in Dirac leptogenesis
technically di↵ers from the namesake setup of [23].

The above cases allow for large ⌘. Moving away from
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closer to the thermal value of Eq. (3). The interactions
and decays of the heavier X copies – required to exist
for non-zero " – will further increase �Ne↵ without con-
tributing to the asymmetry. Even case (III) could there-
fore generate a testable �Ne↵ unless the ⌫R couplings of
all X are suppressed.
Below we quantify the above points for case a, ar-

guably the simplest version of Dirac leptogenesis. The
other cases give qualitatively similar phenomenology, ex-
cept for the leptoquark cases c and d, which are discussed
in more detail towards the end.

A SIMPLE MODEL

As a simple model that realizes Dirac leptogenesis we
introduce two electrically charged scalars X1,2 ⌘ X�

1,2 to
the SM (case a from Tab. I), in addition to the three
right-handed neutrinos necessary to form Dirac neutri-
nos. The Yukawa couplings of ⌫R with the Higgs are mi-
nuscule and play no role in the following. The relevant
interactions of the charged scalars are

L = 1
2 L̄

cFiL X̄i + ēcGi⌫RX̄i + h.c. , (4)

assuming, without loss of generality, that theXi are mass
eigenstates. The matrices F1,2 are antisymmetric in their
flavor indices due to the antisymmetry of the SU(2) sin-
glet contraction L̄c
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arbitrary complex Yukawa matrices. Total lepton num-
ber is conserved by assigning L(Xi) = 2, but, more im-

Idea: Take a new heavy particle X that decay out of equilibrium into a 
non-thermal  and a SM particle. νR

Simple models:

[Heeck, Heisig, Thapa, ’23]
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Dirac Leptogenesis 

When X decays so late into   shoots extremely highly 
relativistic  with energy    arbitrarily large   

νR ⟹
νR ≈ MX /2 ⟹ Neff



Dirac  in the CMBν
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Dirac  in the CMBν

↑ Nonperturbative, ΓX > M
X

↓
Sphaleron
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 decays into high-energy 
 ! 

Testable  
 Large parameter space 

is already excluded (Red) 
and can be probed (lightRed)

X
νR

ΔNeff!
⟹

Don’t need sphalerons: can generate  
directly with Leptoquarks

        Predicts proton decay 

ΔB ≠ 0

⟹ p → K+ν̄R

[Heeck, Heisig, Thapa, ’23]
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Conclusion

Neutrino oscillations require extension of the SM.

Models for both Majorana and Dirac neutrinos were discussed 
with some models to incorporate Dark Matter, Dirac 
leptogenesis, and various anomalies.

Most of the models discussed can be probed through
 LFV experiments ( ), 
  

μ → eγ, τ → μγ
Neff

Hope that anomalies are confirmed CDF,  ,  !(g − 2)μ RD − RD*



Thank you
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  with an extended scalar sector SU(3)C × SU(2)L × U(1)Y



Charged Current Anomaly:  :  RD(*) R2 ∼ (3,2,7/6)

S

S

bL

τR

ω2/3

cR

νL

 +  ( )( ) +  ( ) ( )ℋeff =
4GF

2
Vcb [(1 + gV)(τ̄LγμνL) (c̄LγμbL)] gs τ̄RνL c̄RbL gT τ̄RσμννL c̄RσμνbL

gS (μ = mR2) = 4gT (μ = mR2) =
fL
2α fR⋆

33

4 2m2
R2

GFVcb

Anomalous Magnetic Moment
γ

"L "Rω5/3

uR uL

fR = (
0 0 0
0 0 0
0 0) fL = (

0 0 0
0 0 0
0 0)fR

32 fR
32

For TeV LQ mass, the required product of Yukawa1
(g − 2)μ : fL

32 fR
32 = − 0.0019-3



Experimental Constraints

 conversion
 decay

Rare meson decay

ℓi → ℓjγ
μ − e
Z → ττ
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Bounds from kaons



Collider Constraints
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Fit to Oscillation Data

Figure 3. The longitudinal W±
L,R gauge boson contributions to the neutrino mass, expressed in

terms of the Goldstone boson contributions.

Oscillation 3� range Model prediction

parameters NuFit5.1 [51] BP I (NH) BP II (NH) BP III (IH) BP IV (IH)

�m2
21(10

�5 eV2
) 6.82 - 8.04 7.42 7.38 7.35 7.35

�m2
23(10

�3 eV2)(IH) 2.410 - 2.574 - - 2.48 2.52

�m2
31(10

�3 eV2)(NH) 2.43 - 2.593 2.49 2.51 - -

sin2 ✓12 0.269 - 0.343 0.324 0.301 0.306 0.310

sin2 ✓23 (IH) 0.410 - 0.613 - - 0.510 0.550

sin2 ✓23 (NH) 0.408 - 0.603 0.491 0.533 - -

sin2 ✓13 (IH) 0.02055 - 0.02457 - - 0.0219 0.0213

sin2 ✓13(NH) 0.02060 - 0.02435 0.0234 0.0213 - -

�CP (IH) 192 - 361 - - 236� 279�

�CP (NH) 105 - 405 199� 280� - -

mlight (10�3) eV 0.66 2.04 14.1 8.50

ME1/MWR 917 45.5 1936 1990

ME2/MWR 0.650 0.43 0.12 0.11

ME3/MWR 0.019 0.029 0.015 0.012

Table I. Fits to the neutrino oscillation parameters in the model with normal and inverted hierarchy.
For comparison, the 3� allowed range for the oscillation parameters are also given.

Eq. (3.15) reduces to

G2(r1, r2) ' �r2

✓
1 +

⇡2

3
+

1

2
log r2(�1 + log r2)

◆
. (3.17)

4 Fits to Neutrino Oscillation Data

In this section, we show that the model can correctly reproduce the neutrino oscillation data
by fitting the model parameters to the observables (�m2

21
, �m2

31
, sin2 ✓13, sin2 ✓23, sin2 ✓12).

We find good fits to the normal ordering of neutrino masses as well as inverted ordering.
Furthermore, the model does not place any restriction of the CP violating phase in neutrino
oscillation, as we find fits for any value of �CP .
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