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We propose a new measurement of the
weak mixing angle using neutrino -
electron scattering events at FERMILAB's
new short baseline liquid Argon time
projection chamber detector.
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Different measurements using
different techniques were
performed to determine

sin? Oy .
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Low energy measurements

» APV: Measurements of PV
0244 effects of highly suppressed
atomic transitions. Most
precise measurement is

performed using 133Cs
[WBC*97].

0.242

0.240

7 0.236 » Qweak: Performed at JLab,
0231 polarized electron beam
scatters off protons.
o Measuring the proton's weak
0230 i charge QF, =1 — 4sin?0yy,

104 10°% 102 10! 10° 10! 102 10° . . R
1 (GeV) using polarization asymmetry

in the cross section, one can
extract sin? Oyy.

»> SLAC-158: Mgller scattering
measurement experiment at
SLAC, using polarized
electrons.

Q, =-1+ 4sin? 0y is
extracted using the
polarization asymmetry of the
cross section.

Data points from [T*18].
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Collider searches

>

>

Mostly conducted at the my
pole.

Exploits the
forward-backward asymmetry
induced by the vector and
axial-vector electroweak
couplings that contain the
weak mixing angle.

Most precise measurements
to date, at the 0.1% level.
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» Neutrino DIS experiment
performed at Fermilab, using
a 800 GeV proton beam from
the Tevatron ring.

» Steel scintillator target,
composed primarily of
isoscalar particles.

» The nature of the target
allows for a simple relation
for the NC-CC cross section
ratio, which cancels
uncertainties.

» Disagreement with the
Standard Model prediction
(given other measurements).
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» The statistics of neutrino - electron scattering events in SBND's LArTPC and
some properties of the detector (PRISM) point for a promising measure.
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» The statistics of neutrino - electron scattering events in SBND's LArTPC and
some properties of the detector (PRISM) point for a promising measure.

> Past measurement of sin? 8y, using neutrino physics (NuTEV) is in tension with
other experiments.

» SBND will rely on neutrino - electron measurements to measure its flux, and this
process is sensitive to sin? 6y .

P Access the robustness of this measurement in the presence of new Physics
scenarios.
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sin® GW and the renormallzatlon scheme
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In the literature the sensitivity of neutrino - electron scattering experiments to
radiative corrections is debated (e.g. [BKS95, MMGM21]).

On-shell renormalization scheme

No scale dependence on the weak
mixing angle:

2
. m
smzawzlf—gv.
m
z
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In the literature the sensitivity of neutrino - electron scattering experiments to
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On-shell renormalization scheme MS renormalization scheme
No scale dependence on the weak Physical observable is the (process
mixing angle: dependent) combination

2

sin?fy =1 — L‘;V . #(q°) sin® By (mz),
it

k factor definition

K is a process dependent form factor arising from electroweak corrections [FOS04]
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In the literature the sensitivity of neutrino - electron scattering experiments to
radiative corrections is debated (e.g. [BKS95, MMGM21]).

On-shell renormalization scheme MS renormalization scheme
No scale dependence on the weak

Physical observable is the (process
mixing angle:

dependent) combination
2 . oA
sin?fy =1 — L‘;V . #(q°) sin® By (mz),
iz

k factor definition

K is a process dependent form factor arising from electroweak corrections [FOS04],

27 sin? 9W

,%(q2):1 _ <ZZQ,((Tf — 25sin? OWQ,r)( )+> ,

At low g? the light quark contribution to the v — Z vacuum polarization becomes
nonperturbative, so a data driven analysis must be performed [KMMS13]

1 N 2
30 Qn(T? —2sin? D Q) log % — —6.884+0.06.
f V4
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Cross section

The one loop neutrino - electron scattering cross section reads

do _ 2m.G}
dT

<gf(T) (1+2£@) + (T (1+ 2£(2) (1 - El)z +a(T)er(T) (1+ %mz))) :

where z = T/E,, gr(T) = onc(1/2 — Ky, (T) sin iy (1)) and
gL(T) = —pnchy, (T)sin Ow ().
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Vo w Va
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Cross section

The one loop neutrino - electron scattering cross section reads

do _ 2m.G}
dT

<gf(T) (1+2£@) + (T (1+ 2£(2) (1 - El)z +a(T)er(T) (1+ %mm)) :

where z = T/E,, gr(T) = pnc(1/2 — Ky, (T) sin Gy (1)) and
8L(T) = —pnckv, (T) sin O ().
The f_(z), f+(z) and f1_(z) factors account for QED corrections, for example:

Vo Vo
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The Short-Baseline Neutrino Program

[MPS19].

» The first detector downstream Fermilab’s
Booster neutrino beam.
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Booster neutrino beam.

» State of the art liquid Argon Time Projection
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» Main physics goals include the measurement of
the flux of the neutrino beam at a near
detector, search for new physics (heavy neutral
leptons) and test the technology to be
deployed at DUNE.
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& Fermilab
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The Short-Baseline Neutrino Program

[MPS19].

» The first detector downstream Fermilab’s
Booster neutrino beam.

» State of the art liquid Argon Time Projection
Chamber (LArTPC).

» Main physics goals include the measurement of
the flux of the neutrino beam at a near
detector, search for new physics (heavy neutral
leptons) and test the technology to be
deployed at DUNE.

» Data taking is expected to be begin late 2023
/ early 2024. 8/26
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View from the top
x SBND Detector

Beamline,

[TP21]

»> The SBND detector is positioned very close to the proton target (~ 100 m).
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» Different neutrino production channels result in different beam spectra and
composition as one moves off-axis.
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View from the top
SBND Detector

OAA=0.0 Beamline.

[TP21]

»> The SBND detector is positioned very close to the proton target (~ 100 m).

» Different neutrino production channels result in different beam spectra and
composition as one moves off-axis.

» The event position reconstruction capabilities of SBND allows this difference to
be exploited.
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[DLL19].

Rough estimate of the flux
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The flux

¢ Our analysis

i Decay Pipe
Proton Focusing
Beam Target
—

[DLL19].

Rough estimate of the flux

> A 8 GeV proton beam hits a target at rest, producing multiple hadrons.
— Simulation of proton - proton collisions with Pythia, to get 7+ and n¥ K=*.

» Positively charged particles are focused and negatively charged particles deflected.
— Alignment of 7+ and Kt with the beam direction, with 10% forward K~ and
7~ contamination.

P Particles that survived the focusing horn decay in a hollow pipe.
— Geometric cuts are applied to the daughter neutrinos.
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The estimated neutrino flux at PRISM inner layer, with distance r < 1 m from the beam axis.
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The estimated neutrino flux at PRISM intermediate layer, with distance 1 m < r < 2 m from the
beam axis.
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The estimated neutrino flux at PRISM outer layer, with distance 2 m < r < 3 m from the beam
axis..
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The process we used to measure
sin? Oy is the elastic scattering of
neutrinos off Argon atom'’s

electrons:
Vo Vo
e~ e~
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Signal and background

The process we used to measure

sin? Oy is the elastic scattering of Signal events

neutrinos off Argon atom’s So signal events are those that leave a single

electrons: electromagnetic (EM) shower in the detector
Vo Vo
e e

[A+20]
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Process at SBND

Table: SBND detector events simulation using the NuWro
event generator [GSZ12].

Process ~ Fraction
Quasi elastic CC 47%
Quasi elastic NC 18%

Resonant CC 19%

Resonant NC 7%

Deep inelastic CC 0.9%
Deep inelastic NC 0.6%
Coherent CC 0.4%
Coherent NC 0.3%

Meson exchange CC 7%
Hyperon production 0.01%
Neutrino-electron scattering 0.006%

Compered to other processes, we have very few
neutrino-electron scattering events!
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» Events with hadronic activit
Process at SBND Vi wi roni ivity

can be discarded.

> . .
Table: SBND detector events simulation using the NuWro Events with multiple EM

ST e (G showers can be discarded.
»> We are left mainly with
Process ~ Fraction events containing a single
Quasi elastic CC 47% visible photon coming from
Quasi elastic NC 18% 70 decay, but still giving a
FR;esonant ﬁg 17?;4 signal to background ratio of
esonant ) ~1/4.
Deep .|nelast.|c o O'QZA) We'll see shortly that a kinematic
Deep inelastic NC 0.6% . .
Coherent CC 0.4% cut will remedy that issue.
Coherent NC 0.3%
Meson exchange CC 7%
Hyperon production 0.01%
Neutrino-electron scattering 0.006%

Compered to other processes, we have very few
neutrino-electron scattering events!
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Let’'s suppose that the only visible particle
in an event is a 70, and that it decays with
a small angle relative to the beam direction
in its rest frame...
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Measuring sin® 0,

Let’'s suppose that the only visible particle
in an event is a 70, and that it decays with
a small angle relative to the beam direction
in its rest frame...

. it can result in a low energy invisible
photon and a boosted visible photon in the
rest frame: a single EM shower.
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Signal and background
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Still after all those events cuts, we still have much more background events than
signal events.

1200
Background
1000 1 Signal
8001
600 4

4004

Number of events

200 4

0 200 400 600 800 1000
E6? (MeV)
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Still after all those events cuts, we still have much more background events than
signal events.

But since E,, > me, we can use the ultra-relativistic, where for small angles we obtains

E6? < 2m..
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Still after all those events cuts, we still have much more background events than

signal events.

But since E,, > me, we can use the ultra-relativistic, where for small angles we obtains

E0? < 2me.
1200 509
Background Background
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£ 800 g
K % 304
2 600 iy
2 £ 20]
g g
= 4 3
Z 00 4
200 104
0 0+ T T T T T
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Ef? (MeV)
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Statistical analysis
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Statistics used

We used the following likelihood function for describing the counts at the detector:
L(sin?Oyy) = E ex <71ATZA)
w) = N p 2 )

where A = NP(sin? 0 ) — N°PS, where NP is the predicted number of events and
N°bs is a mock data set generated with the most recent global fit of sin 6.
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Statistics used

We used the following likelihood function for describing the counts at the detector:
L(sin?Oyy) = E ex <71ATZA)
w) = N p 2 )

where A = NP(sin? 0 ) — N°PS, where NP is the predicted number of events and
N°bs is a mock data set generated with the most recent global fit of sin 6.

For the covariance matrix X, we used

Y= (o2 + 5U05)NfYEdNJPred + 6,-J-NJPYEd , with oc=10%, o,=1%,.

This results in the x?

> =ATZA.
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Using o = 10%.

20 N
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The addition of our SBND value for sin® 8y to the running plot. The horizontal error bars
correspond to the accessible scale ;1 = g accessible to the detector.
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Results
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Using o = 5%.
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The addition of our SBND value for sin® 8y to the running plot. The horizontal error bars
correspond to the accessible scale ;1 = g accessible to the detector.
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> Analysis will be improved with the official SBND flux and covariance matrix.
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Thank you for your kind attention!
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