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We propose a new measurement of the
weak mixing angle using neutrino -
electron scattering events at FERMILAB’s
new short baseline liquid Argon time
projection chamber detector.
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The weak mixing angle

Combining gauge fields
B (U(1)Y ) and W 3 (SU(2)L) combine to
form the

B =cos θW A − sin θW Z

W 3 =sin θW A + cos θW Z
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gauge bosons get their masses from

|DµH|2 .
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Past measurements of sin2 θW
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I Different measurements using
different techniques were
performed to determine
sin2 θW .

I Only one measurement was
performed using neutrinos,
and it the one with the
biggest disagreement with the
Standard Model prediction.
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Low energy measurements

I APV: Measurements of PV
effects of highly suppressed
atomic transitions. Most
precise measurement is
performed using 133Cs
[WBC+97].

I Qweak: Performed at JLab,
polarized electron beam
scatters off protons.
Measuring the proton’s weak
charge Qp

w = 1 − 4 sin2 θW
using polarization asymmetry
in the cross section, one can
extract sin2 θW .

I SLAC-158: Møller scattering
measurement experiment at
SLAC, using polarized
electrons.
Qe

w = −1 + 4 sin2 θW is
extracted using the
polarization asymmetry of the
cross section.
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Collider searches
I Mostly conducted at the mZ

pole.
I Exploits the

forward-backward asymmetry
induced by the vector and
axial-vector electroweak
couplings that contain the
weak mixing angle.

I Most precise measurements
to date, at the 0.1% level.
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NuTeV
I Neutrino DIS experiment

performed at Fermilab, using
a 800 GeV proton beam from
the Tevatron ring.

I Steel scintillator target,
composed primarily of
isoscalar particles.

I The nature of the target
allows for a simple relation
for the NC-CC cross section
ratio, which cancels
uncertainties.

I Disagreement with the
Standard Model prediction
(given other measurements).
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Why measuring sin2 θW at SBND?

I The statistics of neutrino - electron scattering events in SBND’s LArTPC and
some properties of the detector (PRISM) point for a promising measure.

I Past measurement of sin2 θW using neutrino physics (NuTEV) is in tension with
other experiments.

I SBND will rely on neutrino - electron measurements to measure its flux, and this
process is sensitive to sin2 θW .

I Access the robustness of this measurement in the presence of new Physics
scenarios.
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sin2 θW and the renormalization scheme

In the literature the sensitivity of neutrino - electron scattering experiments to
radiative corrections is debated (e.g. [BKS95, MMGM21]).

On-shell renormalization scheme
No scale dependence on the weak
mixing angle:

sin2 θW = 1 −
m2

W
m2

Z
.

MS renormalization scheme
Physical observable is the (process
dependent) combination

κ̂(q2) sin2 θ̂W (mZ ) ,

κ factor definition
κ is a process dependent form factor arising from electroweak corrections [FOS04],

κ̂(q2) = 1 −
α

2π sin2 θ̂W

(∑
f

2Qf (T 3
f − 2 sin2 θ̂W Qf )(. . . ) + . . .

)
,

At low q2 the light quark contribution to the γ − Z vacuum polarization becomes
nonperturbative, so a data driven analysis must be performed [KMMS13]

1
3
∑

f
Qf (T 3

f − 2 sin2 θ̂W Qf ) log
m2

f
m2

Z
−→ −6.88 ± 0.06 .
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Neutrino-electron scattering

Cross section
The one loop neutrino - electron scattering cross section reads

dσ
dT

=
2meG2

F
π

(
g2

L(T )
(

1 +
α

π
f−(z)

)
+ g2

R(T )
(

1 +
α

π
f+(z)

)(
1 −

T
Eν

)2
+ gL(T )gR(T )

(
1 +

α

π
f+−(z)

))
,

where z = T/Eν , gR(T ) = ρNC (1/2 − κνl (T ) sin θ̂W (µ)) and
gL(T ) = −ρNCκνl (T ) sin θ̂W (µ).
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The SBND detector

[MPS19].

I The first detector downstream Fermilab’s
Booster neutrino beam.

I State of the art liquid Argon Time Projection
Chamber (LArTPC).

I Main physics goals include the measurement of
the flux of the neutrino beam at a near
detector, search for new physics (heavy neutral
leptons) and test the technology to be
deployed at DUNE.

I Data taking is expected to be begin late 2023
/ early 2024.
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PRISM

[TP21]

I The SBND detector is positioned very close to the proton target (∼ 100 m).

I Different neutrino production channels result in different beam spectra and
composition as one moves off-axis.

I The event position reconstruction capabilities of SBND allows this difference to
be exploited.
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The flux

[DLL19].

Rough estimate of the flux

I A 8 GeV proton beam hits a target at rest, producing multiple hadrons.
→ Simulation of proton - proton collisions with Pythia, to get π± and π± K±.

I Positively charged particles are focused and negatively charged particles deflected.
→ Alignment of π+ and K+ with the beam direction, with 10% forward K− and
π− contamination.

I Particles that survived the focusing horn decay in a hollow pipe.
→ Geometric cuts are applied to the daughter neutrinos.
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The estimated total neutrino flux at SBND.
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Inner layer flux
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The estimated neutrino flux at PRISM inner layer, with distance r < 1 m from the beam axis.
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Intermediate layer flux
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The estimated neutrino flux at PRISM intermediate layer, with distance 1 m < r < 2 m from the
beam axis.
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Outer layer flux
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The estimated neutrino flux at PRISM outer layer, with distance 2 m < r < 3 m from the beam
axis..
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Signal

The process we used to measure
sin2 θW is the elastic scattering of
neutrinos off Argon atom’s
electrons:

να να

e− e−

Signal events
So signal events are those that leave a single
electromagnetic (EM) shower in the detector

[A+20]
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Background budget

Process at SBND

Table: SBND detector events simulation using the NuWro
event generator [GSZ12].

Process ≈ Fraction
Quasi elastic CC 47%
Quasi elastic NC 18%

Resonant CC 19%
Resonant NC 7%

Deep inelastic CC 0.9%
Deep inelastic NC 0.6%

Coherent CC 0.4%
Coherent NC 0.3%

Meson exchange CC 7%
Hyperon production 0.01%

Neutrino-electron scattering 0.006%

Compered to other processes, we have very few
neutrino-electron scattering events!

I Events with hadronic activity
can be discarded.

I Events with multiple EM
showers can be discarded.

I We are left mainly with
events containing a single
visible photon coming from
π0 decay, but still giving a
signal to background ratio of
≈ 1/4.

We’ll see shortly that a kinematic
cut will remedy that issue.
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Meson exchange CC 7%
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Neutrino-electron scattering 0.006%
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I Events with hadronic activity
can be discarded.

I Events with multiple EM
showers can be discarded.

I We are left mainly with
events containing a single
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Typical background event

Let’s suppose that the only visible particle
in an event is a π0, and that it decays with
a small angle relative to the beam direction
in its rest frame...

π0 z

γ

γ

θ

... it can result in a low energy invisible
photon and a boosted visible photon in the
rest frame: a single EM shower.
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Signal and background

Still after all those events cuts, we still have much more background events than
signal events.

But since Eν � me , we can use the ultra-relativistic, where for small angles we obtains

Eθ2 < 2me .
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Statistical analysis

Statistics used
We used the following likelihood function for describing the counts at the detector:

L(sin2 θW ) =
1
N

exp

(
−

1
2
∆TΣ∆

)
,

where ∆ = Npred(sin2 θW )− Nobs, where Npred is the predicted number of events and
Nobs is a mock data set generated with the most recent global fit of sin2 θW .

For the covariance matrix Σ, we used

Σij = (σ2
c + δijσ

2
u)N

pred
i Npred

j + δij Npred
j , with σc = 10% , σu = 1%, .

This results in the χ2

χ2 = ∆TΣ∆ .
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Results

Using σc = 10%.
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The addition of our SBND value for sin2 θW to the running plot. The horizontal error bars
correspond to the accessible scale µ = q accessible to the detector.

20/26



Measuring sin2 θW The SBND detector Our analysis Signal and background Conclusions References

Results

Using σc = 5%.
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The addition of our SBND value for sin2 θW to the running plot. The horizontal error bars
correspond to the accessible scale µ = q accessible to the detector.
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Conclusions

I Measurements of the weak mixing angle may give us precious insight to Standard
Model and beyond Standard Model Physics, specially when performed in the
neutrino sector.

I A measurement of the weak mixing angle at SBND would fit nicely into the
SBND physics program, contributing to the estimation of a flux measurement
uncertainty and search for new new Physics.

I Analysis will be improved with the official SBND flux and covariance matrix.
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Thank you for your kind attention!
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