

# High-energy neutrinos: a new window for particle physics and astrophysics

## **Bei Zhou**

Postdoctoral fellow, Dept. of Physics and Astronomy, Johns Hopkins University (Will be a postdoc associate at Fermilab in the fall)

Collaborators: John Beacom, Po-Wen Chang, Tim Hobbs, Marc Kamionkowski, Kohta Murase, Yun-feng Liang, Keping Xie, etc.

Bei Zhou (JHU)

## TeV—PeV neutrinos (detected by IceCube)

| Evidence    | e for High-   | Energy Ex    | xtraterres   | trial Neutr     | inos at the IceCube | e Detector | #1     |
|-------------|---------------|--------------|--------------|-----------------|---------------------|------------|--------|
| IceCube Co  | ollaboration  | • M.G. Aarts | en (Adelaide | e U.) et al. (N | lov 20, 2013)       |            |        |
| Published i | in: Science 3 | 342 (2013) ´ | 1242856 • e  | -Print: 1311    | .5238 [astro-ph.HE] |            |        |
| 🔎 pdf       | 🔗 links       | ି DOI        | [→ cite      | 🗟 claim         | বি reference search |            | ations |

| IceCube Collaboration • M.G. Aartsen (Adelaide U.) et al. (Apr 19, 2013)         Published in: Phys.Rev.Lett. 111 (2013) 021103 • e-Print: 1304.5356 [astro-ph.HE] | First observation of PeV-energy neutrinos with IceCube |                                                                          |                      |            |                 |                        |                             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|----------------------|------------|-----------------|------------------------|-----------------------------|--|--|--|
| Published in: <i>Phys.Rev.Lett</i> . 111 (2013) 021103 · e-Print: 1304.5356 [astro-ph.HE]                                                                          | IceCube C                                              | IceCube Collaboration • M.G. Aartsen (Adelaide U.) et al. (Apr 19, 2013) |                      |            |                 |                        |                             |  |  |  |
| ▶ pdf 🔗 links ♂ DOI 📑 cite 🗟 claim 🗟 reference search 🕀 874 citations                                                                                              | Published                                              | in: Phys.Rev.                                                            | <i>Lett</i> . 111 (2 | 013) 02110 | )3 • e-Print: 1 | 304.5356 [astro-ph.HE] |                             |  |  |  |
|                                                                                                                                                                    | 🖟 pdf                                                  | 🔗 links                                                                  | ି DOI                | [→ cite    | 🗟 claim         | বি reference search    | $\rightarrow$ 874 citations |  |  |  |

# Why do we study high-energy neutrinos

- Astrophysics: Origin of HE astrophysical neutrinos
  - Sources of HE cosmic rays (> 60-year problem)
  - Cosmic particle acceleration, propagation



- Cosmic gamma ray sources, hadronic vs leptonic mechanism
- Dense astrophysical environments
- Essential for multi-messenger astrophysics (highlighted by astro2020)
- Particle physics:
  - Neutrino interactions in the SM (Deep-inelastic scattering, W-boson production, Glashow resonance)
  - Neutrino mixing parameters
  - BSM (v portal to DM, new v interactions, sterile v, magnetic moment, etc.)

 $\bullet$ 

# Why do we study high-energy neutrinos

- Astrophysics: Origin of HE astrophysical neutrinos
  - Sources of HE cosmic rays (> 60-year problem)
  - Cosmic particle acceleration, propagation



- Cosmic gamma ray sources, hadronic vs leptonic mechanism
- Dense astrophysical environments
- Essential for multi-messenger astrophysics (highlighted by astro2020)
- Particle physics:
  - Neutrino interactions in the SM (Deep-inelastic scattering, W-boson production, Glashow resonance)
  - Neutrino mixing parameters
  - BSM (v portal to DM, new v interactions, sterile v, magnetic moment, etc.)

 $\bullet$ 

# High-energy neutrino interactions

Bei Zhou (JHU)

## Why study neutrino interactions

- Neutrino interactions is the cornerstone of all kinds of neutrino-related measurements
  - Astrophysics: energy spectrum, flavor composition, arrival direction, etc.
  - Particle physics: mixing parameters; all BSM studies contingent on well-understood SM interactions

- Neutrino(-nucleus) interaction theory is interesting and difficult:
  - Entanglement of particle physics, nuclear physics, QCD, etc.

- Help us to find new event classes: useful for both astrophysics and particle physics studies
  - E.g., dimuons for high-energy neutrino detection (2110.02974 BZ, Beacom).

## Detecting neutrinos through neutrino interactions

# Deep inelastic scattering (DIS) dominates $(\simeq 2\% \text{ precision})$



Gandhi+ 96&97, Connolly+ 11, Cooper-Sarkar+ 11, Bertone+ 16, etc. Most recent, Keping Xie, et al. 2303.13607

Bei Zhou (JHU)

CETUP\* 2023 (July 14, 2023)

#### Glashow resonance important for $\bar{v}_e$



Glashow 1960 IceCube 2021

#### **Cross sections**



(BZ, Beacom, 1910.10720, PRD)

## Increasing data needs study subdominant interactions

#### Increasing data demands studying subdominant interactions

| Detector     | Size                  | Status                | Detector | Size                | Status   |
|--------------|-----------------------|-----------------------|----------|---------------------|----------|
| IceCube      | 1 km <sup>3</sup>     | Running for ~14 yrs   | TRIDENT  | 7.5 km <sup>3</sup> | Proposed |
| KM3NET       | 1 km <sup>3</sup>     | Running, constructing |          |                     |          |
| Baikal-GVD   | 1 km <sup>3</sup>     | Running, constructing | FASERv   | Neutrino beam       | Running  |
| P-ONE        | multi-km <sup>3</sup> | Proposed              | FASERv2  | Neutrino beam       | Proposed |
| IceCube-Gen2 | 7.9 km <sup>3</sup>   | Proposed              |          |                     |          |

# Subdominant interactions: W-boson production





#### Three kinematic regimes



Bei Zhou (JHU)

CETUP\* 2023 (July 14, 2023)

# WBP xsec (on oxygen) at different regimes

Inelastic component:

- Largest cross section
- Sets the threshold (FASERv, FASERv2)
- Largest uncertainty, especially near threshold



(BZ, Beacom, 1910.08090, PRD)

Bei Zhou (JHU)

# Inelastic component relies on the photon PDF



Increasing precision in collider physics and others requires:

- NNLO in QCD
- NLO in electroweak → photon PDF (and QED correction to the DGLAP equation)

# How different photon PDFs affects WBP precision

### First generation photon PDFs

NNPDF2.3\_qed: Model-indep parameterization of photon pdf + LHC Drell-Yan data

MRST2004qed: Collinear photon emission from valence quark at low scale + DGLAP evolution to high scale

CT14qed: Similar to MRST, but further constrained by ZEUS ep  $\rightarrow$  ey + X, which is important





# How different photon PDFs affects WBP precision

### Second generation photon PDFs

LUXqed formalism (game changer): (1607.04266 Manohar et al. PRL) Proton photon PDFs written into proton structure functions  $\rightarrow$  percent level precision

MSHT20qed, first neutron photon PDF using the LUXqed formalism

CT18qed, better calculation, especially the error estimation at large x (smaller Ev).

The 2<sup>nd</sup> generation photon PDF increase WBP precision to percent level





# The most precise calculation of WBP so far



The cross section data with uncertainties can be found on the GitHub webpage (just google "[my name] github").

Bei Zhou (JHU)

## Example: Axion-like particle in a muon beam dump experiment



 $E_{\mu} = 1.5 \text{ TeV}, f_a = 1 \text{ TeV}^{-1}$ 

(Xie, BZ, Hobbs CTEQ-TEA Coll., 2305.10497)

# CT18qed for photon PDFs

#### Second generation photon PDFs

LUXqed formalism (game changer): (1607.04266 Manohar et al. PRL) Proton photon PDFs written into proton structure functions  $\rightarrow$  percent level precision

MSHT20qed, first neutron PDF using the LUXqed formalism

CT18qed, better calculation, especially the error estimation at large x (smaller Ev).

The 2<sup>nd</sup> generation photon PDF increase WBP precision to percent level

(Xie, BZ, Hobbs CTEQ-TEA Coll., 2305.10497) Bei Zhou (JHU) CETUP\* 2023 (July 14, 2023)

CT18qed PDFs https://cteq-tea.gitlab.io/project/00pdfs/

Will be available on <u>https://lhapdf.hepforge.org/pdfsets</u> soon.

# High-energy neutrino sources

Bei Zhou (JHU)

# Why do we study high-energy neutrinos

- Astrophysics: Origin of HE astrophysical neutrinos
  - Sources of HE cosmic rays (> 60-year problem)
  - Cosmic particle acceleration, propagation
  - Cosmic gamma ray sources, hadronic vs leptonic mechanism
  - Dense astrophysical environments
  - Essential for multi-messenger astrophysics (highlighted by astro2020)



# Searches for the sources of high-energy neutrinosTXS 0506+056 (Blazar)NGC 1068 (Seyfert II galaxy)Tidal disrupt events



Association with ~300 TeV neutrino 3.0σ (global) 1807.08816 Science, IceCube

Neutrino flare ~2015 3.5o (global); 1807.08794 Science, IceCube

Bei Zhou (JHU)



AT2019dsg (2005.05340), AT2019fdr (2111.09390), AT2019aalc (2111.09391)

possibly associated with HE neutrinos found in multimessenger follow-ups

CETUP\* 2023 (July 14, 2023)

2.9σ (global)

1910.08488 PRL, IceCube

4.2σ (global)

2211.09972 Science, IceCube

## Vast majority of HE astrophysical neutrinos remain unexplained



1903.04334 Ackermann et al

2211.09972 IceCube

#### We must find the dominant sources of the all-sky diffuse HE astrophysical neutrinos

Bei Zhou (JHU)

## Blazars (<~ 30% contribution)

# $\begin{array}{c} \hline \gamma \text{ rays produced along with } \nu \\ p+p \text{ or } p+\gamma \rightarrow \pi^0 \pi^+ \pi^- \\ \pi^0 \rightarrow \gamma \gamma \\ \pi^+ \pi^- \rightarrow e \nu_\mu \nu_e \end{array}$

# Extragalactic gamma ray background (EGB) dominated by blazars



Fermi-LAT observed ~10<sup>3</sup> Blazars, stacking analyses w/ HE nu



#### No HE nu emission found; constraints set



l. 1611.03874 IceCube (See also Smith+ 20 JACP, Yuan+ 20 ApJ) CETUP\* 2023 (July 14, 2023) 20

Bei Zhou (JHU)

## Radio-bright active galactic nuclei (AGN)

Radio bright AGN: radio blazars, radio galaxies, etc. Another major contribution to extragalactic gamma rays



## Radio-bright AGN, discovery?

2001.00930 Plavin et al.

- $\simeq$ 3400 radio-bright AGNs with 8 GHz flux density > 0.15 Jy
- 56 high-energy muon-neutrino events
- Found 3.1σ significance

- 2009.08914 Plavin et al.
- $\simeq$ 3400 radio-bright AGNs with 8 GHz flux density > 0.15 Jy
- Pre-trial p-value map from IceCube
- Found 3.0σ significance

- 4.1σ combining the two analysis (2009.08941)
- These sources could explain all the HE astroph. nu of IceCube (2009.08941)
- 8-GHz flux of AGN may be an indicator of HE nu emission (Both papers)
- But...

Bei Zhou (JHU)

## Radio-bright AGN: our work

- Unbinned maximum-likelihood-ratio method
  - Routinely used by IceCube and others (Fermi-LAT, Super-K, etc.)
  - Extensively used by theorists.
  - Info of every single event
- Same sources (~3400 radio bright AGN)
- Ten years of IceCube  $\nu_{\mu}$  data (1,134,450 events)



2103.12813 BZ, Kamionkowski, Liang

Bei Zhou (JHU)

## Radio-bright AGN: our results

#### **Upper limits**



<sup>2103.12813</sup> BZ, Kamionkowski, Liang

- 1. No significance.
- 2. Contribute < 30% of HE astro nu flux.
- 3. 8-GHz radio emission might not be an indicator of HE nu emission.

Confirmed by 2304.12675 IceCube Collaboration

Bei Zhou (JHU)

## Gamma-ray bursts (GRBs) (<1%)



Long gamma-ray burst

1702.06868 IceCube

5-year IceCube data and 1172 GRBs GRBs contribute < 1% of HE nu

Short GRBs could also produce HE neutrinos

Bei Zhou (JHU)

 $10^{9}$ 

# Choked-jet supernova as sources of HE neutrinos



Choked-jet scenario

1512.08513 Senno, Murase, Meszaros

Long gamma-ray burst

#### Bei Zhou (JHU)

# Choked-jet SN: new analysis considerationsDataSN sampleAnalysis formalism

Same ten-yrs of IceCube data

Collected 386 type lb/c SN between 2008—2018, from several public SN catalogs

**Temporal PDF** 



σ\_T = 4 days Center: 13 days before SN max

#### Energy pdf



Remove the 19 double-counted events due to a misreconstruction error (found by 2110.02974 BZ, Beacom).



# Choked-jet SN models

#### Two classes of models

1. Power-law 1706.02175 Senno, Murase, Mészáros

2. More realistic model astro-ph/0607104 Murase et al. 1306.2274 Murase & loka

Universal parameters  $E_p$ : isotropic equivalent cosmic ray energy injection  $f_{jet}$ : fraction of type Ib/c SNe that have jet

![](_page_28_Figure_5.jpeg)

2210.03088 Chang, BZ, Murase, Kamionkowski

## Choked-jet SNe: could still explain most/all of IceCube observation

![](_page_29_Figure_1.jpeg)

> 10 times stronger than previous work
1706.02175 Senno, Murase, Mészáros
1809.09610 Esmaili, Murase

2210.03088 Chang, BZ, Murase, Kamionkowski (See also 2303.03316 by IceCube collaboration)

Bei Zhou (JHU)

## Summary of looking for HE nu sources

- Critical for all the astrophysical studies
- Still looking for the dominant sources of HE neutrinos
- Some excluded:
   γ-ray blazars, γ-ray bursts, galaxy clusters, etc.
- Some need more data (neutrino/EM) : Radio bright AGN, radio-quiet AGN, choked-jet SN, interaction SN, ultra-long GRB, etc.

# Thanks for your attention!

Bei Zhou (JHU)

![](_page_32_Figure_0.jpeg)

Bei Zhou (JHU)

Coherent and diffractive: Invalidity of equivalent photon approximation (or Weizsäcker-Williams approximation)

### Equivalent photon approx.

 $\gamma(q)$ 

 $e^{-}(p_{2})$ 

## But not valid for WBP & Tridents

![](_page_33_Figure_3.jpeg)

 $\cos\theta \simeq 1$ 

A

 $e^{-}(p_{1})$ 

 $q^2 = (p_2 - p_1)^2 \propto (1 - \cos \theta) \simeq 0$ , on shell photon.

$$\sigma_{\mathrm{e}A}(s) \simeq \int \sigma_{\mathrm{e}\gamma} \bigl( s_{\mathrm{e}\gamma} \bigr) \, H_{\gamma}(s_{\mathrm{e}\gamma}, q^2)$$

*Ballett et al., 1807.10973* showed the invalidity of EPA for tridents.

# We show the invalidity for W boson production, for the first time

Bei Zhou (JHU)

## Coherent and diffractive: complete approach

$$i M = L^{\mu} \frac{-ig_{\mu\nu}}{q^2} H^{\nu}; \ \frac{d^2 \sigma_{\nu X}}{dq^2 d\hat{s}} = \frac{1}{32\pi^2 (s - M_X^2)^2} \frac{H^{\mu\nu} L^{\mu\nu}}{q^4};$$
  
$$\frac{d^2 \sigma_{\nu A}}{dq^2 d\hat{s}} = \frac{1}{32\pi^2 \hat{s} q^2} \left[ \sigma_{\nu\gamma}^T (q^2, \hat{s}) h_X^T (q^2, \hat{s}) + \sigma_{\nu\gamma}^L (q^2, \hat{s}) h_X^L (q^2, \hat{s}) \right]$$

Transverse Longitudinal

$$\sigma_{\nu\gamma}^{T}(\hat{s}, q^{2}) = -\frac{1}{2\hat{s}} \frac{1}{2} \left( g^{\mu\nu} - \frac{4Q^{2}}{\hat{s}^{2}} p_{1}^{\mu} p_{1}^{\nu} \right) L_{\mu\nu};$$
  
$$\sigma_{\nu\gamma}^{L}(\hat{s}, q^{2}) = -\frac{1}{\hat{s}} \frac{4Q^{2}}{\hat{s}^{2}} p_{1}^{\mu} p_{1}^{\nu} L_{\mu\nu};$$

 $h_X^{T/L}$  inludes the form factors.

Diffractive regime: included Pauli-blocking effects for the first time assuming ideal Fermi gas of nucleons with equal density Bei Zhou (JHU) U. of Maryland, Ef (WBP as an example, similar for tridents)

![](_page_34_Figure_7.jpeg)

#### EPA is not good. Pauli blocking should be included.

# Total neutrino-nucleus (Oxygen) cross section

![](_page_35_Figure_1.jpeg)

W-boson production: First comprehensive calculation

Tridents: First calculation at TeV—PeV

Bei Zhou (JHU)

# Implications from large WBP xsec

1. Neutrino absorption in Earth (increase as large as  $\approx 15\%$ )

2. Detections in IceCube, IceCube-Gen2, etc. (Next few slides.)

# Brief review of IceCube detection

![](_page_37_Figure_1.jpeg)

μ track mainly νμ CCDIS Shower (e or hadron) e: mainly from ve CCDIS hadrons: All CC/NC DIS

EM shower (e) vs Hadronic shower

Double bang/pulse  $(\tau)$ 

 $(v\tau CCDIS > 1e5 GeV)$ 

Bei Zhou (JHU)

## WBP mainly showers

![](_page_38_Figure_1.jpeg)

Bei Zhou (JHU)

## Shower spectrum: WBP contributes and detectable

For 10 years observation by IceCube (=1 year IceCube-Gen2)

![](_page_39_Figure_2.jpeg)

 $\simeq 6$  WBP shower events (> 60 TeV)

Bei Zhou (JHU)

## New event classes

1. Double track/Dimuon (showerless) 0.34 events (> 60 TeV, 10yrs IceCube or 1yr Gen) Mainly from:  $v_{\mu} + A \rightarrow \mu + W + A'$  with  $W \rightarrow \mu$ 

2. Track without shower 0.96 events ..... *Mainly from:*  $v_{\mu} + A \rightarrow \mu + W + A'$  with  $W \rightarrow \mu$ , and two tracks are inseparable  $v_e + A \rightarrow e + W + A'$  with  $W \rightarrow \mu$ , and *e* undetectable

3. Pure EM shower 0.82 events ..... Mainly from:  $v_e + A \rightarrow e + W + A'$  with  $W \rightarrow e$ 

(BZ, Beacom, 1910.10720, PRD)

Bei Zhou (JHU)

# High-energy neutrino interactions

- 1. WBP and tridents:
  - 1. Cross section calculations
  - 2. Detections in IceCube/IceCube-Gen2
- 2. New event class: dimuons

Bei Zhou (JHU)

# Dataset and analysis

#### List of the 19 dimuon candidates we found

| MJD1 [day]     | MJD2 (= MJD1)  | $E_{\mu 1}$ [TeV] | $E_{\mu 2}$ | RA1 [deg] | RA2     | Dec1   | Dec2   | AngErr1 | AngErr2 | AngDis | DisErr |
|----------------|----------------|-------------------|-------------|-----------|---------|--------|--------|---------|---------|--------|--------|
| 56068.26557772 | 56068.26557772 | 1.23              | 1.05        | 25.065    | 25.860  | 18.168 | 18.466 | 0.38    | 1.85    | 0.81   | 1.89   |
| 56115.78056499 | 56115.78056499 | 2.29              | 0.65        | 296.835   | 296.891 | 41.777 | 46.922 | 3.10    | 0.41    | 5.15   | 3.13   |
| 56235.14756523 | 56235.14756523 | 2.19              | 2.19        | 179.781   | 185.182 | 20.271 | 28.274 | 2.50    | 1.57    | 9.39   | 2.95   |
| 56582.68675378 | 56582.68675378 | 2.29              | 1.35        | 120.687   | 121.892 | 26.630 | 24.994 | 1.47    | 0.78    | 1.96   | 1.66   |
| 56653.19502448 | 56653.19502448 | 3.31              | 1.48        | 48.106    | 47.781  | 30.840 | 30.100 | 0.75    | 1.19    | 0.79   | 1.41   |
| 56784.87114671 | 56784.87114671 | 1.35              | 0.35        | 126.690   | 126.357 | 69.524 | 70.871 | 1.97    | 2.83    | 1.35   | 3.45   |
| 56813.78701082 | 56813.78701082 | 0.91              | 0.83        | 184.136   | 181.708 | 31.627 | 31.957 | 3.01    | 0.83    | 2.09   | 3.12   |
| 56895.78341718 | 56895.78341718 | 1.91              | 0.79        | 295.288   | 303.817 | 14.387 | 16.670 | 1.94    | 1.61    | 8.53   | 2.52   |
| 56932.15214130 | 56932.15214130 | 1.70              | 0.98        | 175.546   | 173.549 | 36.710 | 35.972 | 1.17    | 0.86    | 1.77   | 1.45   |
| 56940.02405671 | 56940.02405671 | 5.13              | 3.72        | 1.404     | 0.541   | 11.716 | 9.353  | 3.13    | 2.38    | 2.51   | 3.93   |
| 57214.99298310 | 57214.99298310 | 1.51              | 0.83        | 13.089    | 14.760  | 39.101 | 39.034 | 3.50    | 0.85    | 1.30   | 3.60   |
| 57376.46221142 | 57376.46221142 | 1.66              | 1.55        | 326.795   | 328.022 | 17.543 | 15.199 | 2.11    | 1.15    | 2.62   | 2.40   |
| 57461.19606500 | 57461.19606500 | 1.35              | 1.10        | 308.771   | 307.274 | 31.268 | 30.077 | 1.08    | 1.37    | 1.75   | 1.74   |
| 57499.81363094 | 57499.81363094 | 5.89              | 1.70        | 199.430   | 201.527 | 16.454 | 15.029 | 2.55    | 1.30    | 2.47   | 2.86   |
| 57560.74070687 | 57560.74070687 | 1.74              | 0.79        | 219.566   | 219.023 | 12.582 | 13.008 | 1.62    | 0.74    | 0.68   | 1.78   |
| 57650.26270928 | 57650.26270928 | 6.17              | 2.40        | 256.189   | 255.088 | 19.588 | 20.293 | 2.03    | 0.77    | 1.25   | 2.17   |
| 57661.79317519 | 57661.79317519 | 1.45              | 0.91        | 24.276    | 21.095  | 23.145 | 24.317 | 1.72    | 2.22    | 3.14   | 2.81   |
| 58003.09416087 | 58003.09416087 | 2.29              | 1.23        | 349.095   | 345.586 | 21.328 | 19.554 | 2.17    | 1.30    | 3.74   | 2.53   |
| 58266.46093610 | 58266.46093610 | 2.63              | 1.48        | 296.881   | 294.994 | 19.596 | 20.896 | 1.57    | 1.45    | 2.20   | 2.14   |

#### (BZ, Beacom, 2110.02974)

- Ten years of public IceCube data (1,134,450 muon events; 2008--2018)
- Data obtained after multiple strong cuts optimized for point-source search, not dimuon search.

• We analyze the data by looking for muon pairs arriving close in time and direction

# Agrees with our prediction

![](_page_43_Figure_1.jpeg)

#### angular distribution

#### zenith distribution

(BZ, Beacom, 2110.02974)

47

## Outcome of these candidates

- After our paper out, IceCube collaboration did a visual inspection to these candidates, and found that they are not real dimuons.
- They are, instead, due to an internal reconstruction error that identifies some single muons crossing the dust layer as two separate muons.

• IceCube has started an analysis searching for dimuons events.

#### Inside IceCube detector

![](_page_44_Figure_5.jpeg)

Bei Zhou (JHU)

## Unbinned maximum-likelihood-ratio method

2103.12813 BZ, Kamionkowski, Liang

![](_page_45_Figure_2.jpeg)

## Search for neutrino emission from each source

| TABLE I. List of the five sources with highest significance. |            |                          |             |                                |                                   |                                  |  |  |  |
|--------------------------------------------------------------|------------|--------------------------|-------------|--------------------------------|-----------------------------------|----------------------------------|--|--|--|
| IVS name                                                     | J2000 name | X-band flux density (Jy) | $\hat{n}_s$ | $ \mathrm{TS}_{\mathrm{max}} $ | Pretrial p value, significance    | Post-trial p value, significance |  |  |  |
| 1303-170                                                     | J1306-1718 | 0.208                    | 21.6        | 16.6                           | $2.28 	imes 10^{-5},  4.1\sigma$  | $0.074,1.5\sigma$                |  |  |  |
| 2245 + 029                                                   | J2247+0310 | 0.434                    | 50.8        | 14.5                           | $7.14 	imes 10^{-5},  3.8\sigma$  | $0.21,0.8\sigma$                 |  |  |  |
| 0228-163                                                     | J0231-1606 | 0.162                    | 15.9        | 9.8                            | $8.90 	imes 10^{-4},  3.1 \sigma$ | 0.95,0                           |  |  |  |
| 1424 + 240                                                   | J1427+2348 | 0.187                    | 38.1        | 8.9                            | $1.42 	imes 10^{-3},  3.0\sigma$  | 0.99, 0                          |  |  |  |
| 0958+559                                                     | J1001+5540 | 0.180                    | 27.2        | 8.3                            | $2.02 	imes 10^{-3},  2.9 \sigma$ | 1.0, 0                           |  |  |  |

#### We don't find any sources that have significant neutrino emission

Bei Zhou (JHU)

## Search for neutrino emission from each source

![](_page_47_Figure_1.jpeg)

2103.12813 BZ, Kamionkowski, Liang

- 1. None of the sources show a large global significance
  - The two highest-significant sources
    - 1.5σ (global), 4.1σ (local)
  - II. 0.8σ (global), 3.8σ (local)
- 2. So, the  $\simeq$ 3400 radio-bright AGN might not have a strong correlation with HE nu
- 3. 8-GHz flux density might not be an indicator of HE nu emission.

Bei Zhou (JHU)

# Correlation between all srcs & events (Stacking analysis)

**Upper limits** 

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

2103.12813 BZ, Kamionkowski, Liang

1. No significance.

2. Contribute < 30% of HE astro nu flux.

3. 8-GHz radio emission might not be an indicator of HE nu emission.

Bei Zhou (JHU)

# Ratios of WBP to CCDIS cross section

![](_page_49_Figure_1.jpeg)

#### (Zhou, Beacom, 1910.08090, PRD)

### **Implications:**

- 1. Neutrino absorption in Earth (Increase as large as  $\approx 15\%$ )
- 2. Detections in IceCube, etc.

Bei Zhou (JHU)

![](_page_50_Figure_0.jpeg)

### Features: And W takes most of the energy Energy transferred to nucleus is negligible

Bei Zhou (JHU)

# WBP produces more W's than Glashow resonance

(BZ, Beacom, 1910.10720, PRD)

![](_page_51_Figure_2.jpeg)

 $\alpha = 2.9$  A factor of 20 (right figure  $\rightarrow$ ) (2.9 is from fitting IceCube data)

 $\alpha = 2.5$  A factor of 3.5  $\alpha = 2.0$  A factor of 0.5

So, WBP is the dominant source of on-shell W bosons unless the spectrum is extremely hard.

Bei Zhou (JHU)

# Increase neutrino attenuation in Earth

Neutrino flux  $\phi$ , after attenuation is  $\phi \times A$ 

Attenuation factor:

 $A = e^{-C(\cos \theta_z) \, \sigma(E_v)}$ 

 $C(\cos \theta_z)$  : column density, well known

 $\sigma(E_{\nu})$ : total xsec. WBP was not included.

Inseparable part of measuring xsec by IceCube.

 $1.3\pm0.45$  of SM, but WBP not included

Bei Zhou (JHU)

![](_page_52_Figure_10.jpeg)

| Channel                     | W decay                                               | Final<br>state     | $\tau$ decay        | Signature Fra                                |      | Counts |
|-----------------------------|-------------------------------------------------------|--------------------|---------------------|----------------------------------------------|------|--------|
|                             | $e\nu_e,  11\%$                                       | e e                |                     | Pure EM shower                               | 11%  | 0.34   |
| $\nu_e \rightarrow eW$      | $\mu \nu_{\mu}, 11\%$                                 | e $\mu$            |                     | Track without/with shower                    | 11%  | 0.34   |
| (7.5%  rel.                 |                                                       |                    | e, 18%              | Pure EM shower                               | 2.0% | 0.06   |
| to CCDIS)                   | $\tau \nu_{\tau}, 11\%$                               | e $\tau$           | $\mu,17\%$          | Track without/with (displaced) shower        | 1.9% | 0.06   |
| ,                           |                                                       |                    | h,65%               | Shower                                       | 7.2% | 0.22   |
|                             | $q\bar{q},67\%$                                       | e $\boldsymbol{h}$ |                     | Shower                                       | 67%  | 2.08   |
|                             | $e\nu_e,11\%$                                         | $\mu$ e            |                     | <b>Pure EM shower</b> /Track with shower     | 11%  | 0.56   |
|                             | $\mu  u_{\mu},  11\%$                                 | $\mu \mu$          |                     | Single/Double tracks without shower          | 11%  | 0.56   |
| $ u_{\mu}  ightarrow \mu W$ |                                                       |                    | e,18%               | Pure EM shower/Track with (displaced) shower | 2.0% | 0.10   |
| (5.0%  rel.                 | $\tau \nu_{\tau}, 11\%$                               | $\mu \tau$         | $\mu,17\%$          | Single/Double tracks without shower          | 1.9% | 0.10   |
| to CCDIS)                   |                                                       |                    | h,65%               | Shower/Shower with (displaced) track         | 7.2% | 0.36   |
|                             | $q\bar{q}, 67\%$   $\mu h$   Shower/Shower with track |                    |                     |                                              |      | 3.41   |
|                             | $e\nu_e, 11\%$                                        | $\tau$ e           | e,  18%             | Pure EM shower                               | 2.0% | 0.02   |
|                             |                                                       |                    | $\mu, 17\%$         | Pure EM shower/Track with (displaced) shower | 1.9% | 0.02   |
|                             |                                                       |                    | h,65%               | <b>Pure EM shower</b> /Shower                | 7.2% | 0.09   |
|                             | un 11%                                                |                    | $\mu,17\%$          | Single/Double tracks without shower          | 1.9% | 0.02   |
| $\nu_{\tau} \to \tau W$     | $\mu\nu_{\mu}, 1170$                                  | 7 μ                | e or $h,83\%$       | Track without shower/with (displaced) shower | 9.1% | 0.11   |
| (3.5% rel.                  |                                                       |                    | $e\ e,\ 3\%$        | Pure EM shower                               | 0.4% | 0.004  |
| to CCDIS)                   | $\tau \nu_{\tau}, 11\%$                               | $\tau \tau$        | $\mu$ $\mu$ , 3%    | Single/Double tracks without shower          | 0.3% | 0.004  |
|                             |                                                       |                    | $\mu$ e/h, 29%      | Track without shower/with (displaced) shower | 3.1% | 0.04   |
|                             |                                                       |                    | h~h/e,65%           | Shower/Double bang                           | 7.2% | 0.09   |
|                             | $a\bar{a}$ 67%                                        | $\tau h$           | $e~{\rm or}~h,83\%$ | Shower                                       | 56%  | 0.69   |
|                             | 44, 0170                                              | 1 10               | $\mu, 17\%$         | Shower/Shower with track                     | 11%  | 0.14   |
| Total counts                |                                                       |                    |                     |                                              |      | 9.44   |

Bei Zhou (JHU)

## Glashow resonance vs. W-boson production

|                     | Glashow resonance                   | W-boson production                                                                                 |
|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|
| Process             | $\bar{\nu}_e + e^- \rightarrow W^-$ | $\nu_{x} + A \rightarrow x^{-} + W^{+} + A'$<br>$\bar{\nu}_{x} + A \rightarrow x^{+} + W^{-} + A'$ |
| Neutrino energy     | $E\nu\simeq 6.3~{\rm PeV}$          | <i>Ev</i> > ~10 TeV                                                                                |
| First predicted by  | Sheldon L. Glashow                  | T. D. Lee & C. N. Yang                                                                             |
| First predicted in  | 1960 (Phys. Rev.)                   | 1960 (PRL)                                                                                         |
| First "Detected" in | March 2021, IceCube (2.3o; Nature)  |                                                                                                    |

WBP could produce ~10 times more W bosons in neutrino telescopes

Bei Zhou (JHU)

# Encouraging hints from current IceCube data

(BZ, Beacom, 1910.10720, PRD)

#### Measuring neutrino cross section

#### Event topology

![](_page_55_Figure_4.jpeg)

Track without shower??

Event 5 of IceCube, 1311.5238, Science

Bei Zhou (JHU)

![](_page_55_Figure_8.jpeg)

1.3±0.45 of SM prediction but only DIS is included

IceCube, 1711.08119, Science

U. of Maryland, EPT seminar (May 1, 2023)

#### Diffuse Astrophysical vµ Spectrum

![](_page_55_Figure_13.jpeg)

An unknown 2% deficit of straight up-going events

IceCube, 1908.09551 ICRC 2019