

Non-Standard Interactions in Solar Neutrinos

<u>Gleb Sinev</u>, Juergen Reichenbacher

South Dakota Mines

July 7, 2023

SOUTH DAKOTA MINES

Outline

- Non-standard neutrino interactions (NSI)
 - Solar neutrinos, oscillations
- Rates and measurement
- Potential experimental constraints

https://www.businessinsider.com/neutrinos-forged-in-the-heart-of-the-sun-2014-8

• Conclusions

Non-Standard Interactions in Solar Neutrinos

Non-standard neutrino interactions (NSI)

- One possible explanation
- Standard model (SM) neutrino interactions
 - Everything else: NSI

- Here focus on neutral-current models with heavy mediators $(m_{\tau'}^2 \gg Q^2)$
 - $\mathcal{L}_{\alpha\beta}^{fP} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} [\bar{\nu}_{\alpha}\gamma^{\mu}(1-\gamma^5)\nu_{\beta}] [\bar{f}\gamma_{\mu}Pf]$
 - Can change v flavor, not fermion (f)
 - Parameterized by ε's

<u>https://arxiv.org/pdf/1601.07179.pdf</u> A. Serenelli (2016) <u>https://pdg.lbl.gov/2020/reviews/rpp2020-rev-neutrino-mixing.pdf</u> PDG 2020

Solar neutrinos

High flux of neutrinos < 20 MeV produced in Sun

- Most < 1 MeV
- Produced as v_e
 - ~0.5 change flavor

⁷Be

pep

Solar neutrino oscillations

- Vacuum oscillations + matter effect in Sun
- v_e survival probability
 - $P_{ee}^{3\nu} = \cos^4 \theta_{13} P_{ee}^{2\nu} + \sin^4 \theta_{13}$
 - $P_{ee}^{2\nu} = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m]$

pp

0.9

0.8

0.7

0.6

O.G. Miranda, M.A. Tórtola, J.W.F. Valle (2006) arXiv:hep-ph/0406280 (extended with up-quark NSI and different NSI parameterization)

NSI in Sun

• 2-flavor model

• $H = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} + \sqrt{2}G_F (N_d + N_u) \begin{pmatrix} \varepsilon_D & \varepsilon_N \\ \varepsilon_N & -\varepsilon_D \end{pmatrix}$

• Measurement:
$$P(v_e \rightarrow v_e) = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m]$$

•
$$\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e + 2\varepsilon_D(N_d + N_u))}{[\Delta m^2]_{matter}}$$

• $\left[\Delta m^2\right]_{matter}^2 = \left[\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e + 2\varepsilon_D(N_d + N_u))\right]^2$
+ $\left[\Delta m^2 \sin 2\theta + 4\sqrt{2}\varepsilon_N EG_F(N_d + N_u)\right]^2$

Non-Standard Interactions in Solar Neutrinos

NSI in Sun

O.G. Miranda, M.A. Tórtola, J.W.F. Valle (2006) arXiv:hep-ph/0406280 (extended with up-quark NSI and different NSI parameterization)

• 2-flavor model

•
$$H = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} + \sqrt{2}G_F (N_d + N_u) \begin{pmatrix} \varepsilon_D & \varepsilon_N \\ \varepsilon_N & -\varepsilon_D \end{pmatrix}$$

• Measurement:
$$P(v_e \rightarrow v_e) = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m]$$

•
$$\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e + 2\varepsilon_D(N_d + N_u))}{[\Delta m^2]_{matter}}$$
 NSI_D
• $[\Delta m^2]_{matter}^2 = [\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e + 2\varepsilon_D(N_d + N_u))]^2 + [\Delta m^2 \sin 2\theta + 4\sqrt{2}\varepsilon_N EG_F(N_d + N_u)]^2$ NSI_N

NSI constraints (early 2020)

• All but plotted NSI coupling marginalized

Excellent global fit and summary of NSI:

P. Coloma, I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni (2019) arXiv:1911.09109

07/07/2023

NSI constraints (early 2020)

- All but plotted NSI coupling marginalized
- Looking primarily at ε^u_{ee} and ε^d_{ee}
 - Most promising for non-zero NSI
 - What if we set $\varepsilon_{ee}^{u} = \varepsilon_{ee}^{d}$ and rest to 0?

Excellent global fit and summary of NSI:

P. Coloma, I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni (2019) arXiv:1911.09109

07/07/2023

Simplified model

O.G. Miranda, M.A. Tórtola, J.W.F. Valle (2006) arXiv:hep-ph/0406280 (extended with up-quark NSI and different NSI parameterization)

• 2-flavor model

$$SM \text{ vacuum oscillations + matter effect} \qquad NSI$$

$$H = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} + \sqrt{2}G_F (N_d + N_u) \begin{pmatrix} \varepsilon_D & 0 \\ 0 & -\varepsilon_D \end{pmatrix}$$

$$Measurement: P(v_e \to v_e) = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m] \qquad \varepsilon_D = \frac{\varepsilon_{ee}^u}{2} = \frac{\varepsilon_{ee}^d}{2}$$

$$\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F (N_e + 2\varepsilon_D (N_d + N_u))}{[\Delta m^2]_{matter}} \qquad NSI_D \qquad NSI_N = 0$$

•
$$\left[\Delta m^2\right]_{matter}^2 = \left[\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F\left(N_e + 2\varepsilon_D(N_d + N_u)\right)\right]^2 + \left[\Delta m^2 \sin 2\theta\right]^2$$

F. Capozzi, S.W. Li, G. Zhu, J.F. Beacom (2018) arXiv:1808.08232

NSI-modified oscillations

- Correcting KamLAND result (**blue**) with $\varepsilon_D = 0.0625$ (dot-dashed) produces same survival probability as solar fit (**green**)
- Could possibly explain neutrino anomaly

Back to full model

O.G. Miranda, M.A. Tórtola, J.W.F. Valle (2006) arXiv:hep-ph/0406280 (extended with up-quark NSI and different NSI parameterization)

• 2-flavor model

•
$$H = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} + \sqrt{2}G_F (N_d + N_u) \begin{pmatrix} \varepsilon_D & \varepsilon_N \\ \varepsilon_N & -\varepsilon_D \end{pmatrix}$$

• Measurement:
$$P(v_e \rightarrow v_e) = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m]$$

•
$$\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e + 2\varepsilon_D(N_d + N_u))}{[\Delta m^2]_{matter}}$$
 NSI_D
• $[\Delta m^2]_{matter}^2 = [\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e + 2\varepsilon_D(N_d + N_u))]^2 + [\Delta m^2 \sin 2\theta + 4\sqrt{2}\varepsilon_N EG_F(N_d + N_u)]^2$ NSI_N

07/07/2023

A. Friedland, M.L. Graesser, I.M. Shoemaker, L. Vecchi (2012) arXiv:1111.5331

How do NSI affect survival probability?

flavor-diagonal couplings

flavor off-diagonal couplings

Current constraints

- Thorough study in paper
 - Global fit of neutrino experiments (2020)
- Marginalized over oscillation parameters
- Green contours 90% and 3σ CL from atmospheric and LBL fit
- Other colors 1σ, 90%, 2σ, 99%, 3σ CL from solar+KamLAND fit
- What can we compare our result to?

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado (2018) arXiv:1805.04530

07/07/2023

Current constraints

- Relevant limit corresponding to same NSI couplings for u and d quarks
 - Our assumptions

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado (2018) arXiv:1805.04530

07/07/2023

Fundamentals of Neutrino Physics and Astrophysics C. Giunti and C.W. Kim (2007)

Elastic scattering (ES)

Rates

 Integrating previous plot 101 for exposure and number of electrons 101 101

Statistical analysis

- Estimating sensitivity
 - Assume we observe SM prediction
 - What NSI we allow/exclude?
- Use Poisson negative log likelihood

•
$$NLL = -2\log \mathcal{L} = 2\sum_{i=1}^{N} \left[R_i^{SM} - R_i^{NSI} + R_i^{SM} \log \frac{R_i^{NSI}}{R_i^{SM}} \right]$$

- Allowed NSI to $1\sigma,\,90\%$ CL, $2\sigma,\,99\%$ CL, 3σ
 - *NLL* < 2.30, 4.61, 6.18, 9.21, 11.83
 - Critical values from 2-df χ^2 distribution

Ä

Current-generation Xe DM experiments

- LZ, XENONnT
- Assume
 - 7 t of Xe
 - 3 years of running
 - No backgrounds, perfect energy resolution
- MeVs of deposited energy is high energy

D.S. Akerib et al. (2018), arXiv:1802.06039

Potential Xe constraint

- May exclude significant part of parameter space
 - If we detect every neutrino, have perfect energy resolution, etc.
- What is currently allowed?

Comparison with current constraints

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado (2018) arXiv:1805.04530

Global fit is better overall, but combining data may improve fit

B. Abi et al. (2020) arXiv:2002.02967

Future neutrino experiments

- Looked into possible constraint in 10s of years
 - Until then, solar neutrinos measured primarily by DM detectors
 - Maybe also SNO+
- Focus on Ar

K. Abe et al. (2018) arXiv:1805.04163

HUGE DETECTORS

Low-background kt-scale Ar detector

- Potential module for Deep Underground Neutrino Experiment
- Assume
 - 3 kt of Ar
 - 1 year of data
 - Early result
 - No backgrounds, perfect energy resolution
 - Energy threshold of 1 MeV

T. Bezerra et al. (2023) arXiv:2301.11878

Potential future Ar constraint

- May exclude significant part of parameter space
 - If we detect every neutrino, have perfect energy resolution, etc.

Conclusions

- Expect many solar neutrinos to interact in current DM and future neutrino detectors
- Plan to use them to constrain NSI
 - May not significantly improve global fit at first, but will add independent measurement
 - Expect future neutrino experiments to constrain NSI much further
 - Could potentially explain solar neutrino anomaly

ν	Vµ
Ve	?

Backup slides

A. Gando, et al. (2013) arXiv:1303.4667

KamLAND result

- Fit survival probability
 - Measured L/E over expected L/E for vs from reactors around KamLAND

$$\begin{split} P_{ee}^{3\nu} &= \cos^4 \theta_{13} \widetilde{P}_{ee}^{2\nu} + \sin^4 \theta_{13} \\ \widetilde{P}_{ee}^{2\nu} &= 1 - \sin^2 2\theta_{12M} \sin^2 \left(\frac{\Delta m_{21M}^2 L}{4E_{\nu}}\right) \\ \sin^2 2\theta_{12M} &= \frac{\sin^2 2\theta_{12}}{(\cos 2\theta_{12} - A/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \\ dm_{21M}^2 &= \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - A/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \\ A &= \pm 2\sqrt{2}G_F \widetilde{N}_e E_{\nu} \qquad \widetilde{N}_e = N_e \cos^2 \theta_{13} \end{split}$$

 Δ

Solar results

- Many solar-neutrino experiments
 - Borexino, Super-K, SNO, ...
- Fit survival probability
 - $P_{ee}^{3\nu} = \cos^4 \theta_{13} P_{ee}^{2\nu} + \sin^4 \theta_{13}$
 - $P_{ee}^{2\nu} = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m]$
 - $\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta 2\sqrt{2}EG_F N_e}{[\Delta m^2]_{matter}}$
 - $\left[\Delta m^2\right]_{matter}^2 = \left[\Delta m^2 \cos 2\theta 2\sqrt{2}EG_F N_e\right]^2 + \left[\Delta m^2 \sin 2\theta\right]^2$

https://indico.fnal.gov/event/43209/contributions/187863/attachments/129474/159089/nakajima_Neutrino2020.pdf

Y. Nakajima, NEUTRINO2020

31

Solar neutrino anomaly in 2020

- Started looking into NSI to explain solar neutrino anomaly
- Its significance decreased
 2019 → 2020
- Not game changer
 - still worthwhile
 NSI search with solar v's

SK+SNO fit disfavors the KamLAND best fit value at ~1.4 σ (was ~2 σ)

https://indico.fnal.gov/event/43209/contributions/187863/attachments/129474/159089/nakajima_Neutrino2020.pdf

Y. Nakajima, NEUTRINO2020

New Super-K solar oscillation results

				$\Delta \chi^2$	8 ³ σ		· · · · · · · · · · · · · · · · · · ·			-		
					⁴ 2σ 2			, , , , , , , , , , , , , , , , , , ,				
				eV ²	_sin ²	$(\Theta_{12})=0.316^{+0.034}_{-0.026}$ $(\Theta_{12})=0.306\pm0.014$	$\Delta m_{21}^2 = (7.54^{+0.19}_{-0.18})$ $\Delta m_{21}^2 = (6.11^{+1.21}_{-0.68})$	10 ⁻⁵ eV ² sin ² (Θ 10 ⁻⁵ eV ²	9 ₁₃)=0.0219±0.0)014		
		sin²(θ ₁₂)	Δm ² ₂₁ [10 ⁻⁵ eV ²]	10 ⁻⁵	_sin ²	(Θ ₁₂)=0.306 ^{+0.013} -0.012	$\Delta m_{21}^2 = (7.51^{+0.19}_{-0.18})$	10 ⁻⁵ eV ²	relimi	nary		_
	KamLAND	$0.316^{+0.034}_{-0.026}$	$7.54^{+0.19}_{-0.18}$.⊆_1	5	SK+SN		\frown	KamL			_
	SK+SNO	0.306±0.014	$6.11^{+1.21}_{-0.68}$	² ²	_			\frown				-
A Fit _	Combined (-3.6 ± 1.6)	$0.306^{+0.013}_{-0.012}$	$7.51^{+0.19}_{-0.18}$	∫ 1		O e rech i						
$A_{DN}^{*u} =$ Best f	$= (-3.6 \pm 1.6)$	$(stat) \pm 0.6(syst))\%$ ar Δm_{21}^2 changed from	$\rightarrow A_{DN}^{1u} = (-2.1 \pm 10^{-5} \text{ eV}^2)$	(2019) to	5	Combin	show 1, 2,	5 σ cor	nfidence i	ntervals	a 2a	3σ
6.1 X ⁻	10-5 eV2					0.1	0.2	0.3	0.4	0.5 sin ² (θ)	24	68 $\Delta\chi^2$

Matter oscillations

- Survival probability depends on energy
- Measurements agree with theory
- Best oscillation fit from SNO+SK (black)
- Need better statistics and more measurements in transition region

KamLAND

- 1 kton of liquid scintillator
- Located in Kamioka, Japan
 - Detects neutrinos from reactors in Japan

arXiv:1808.04207

- Measured both v_{e} and total v fluxes

Super-Kamiokande

O.G. Miranda, M.A. Tórtola, J.W.F. Valle (2006) arXiv:hep-ph/0406280

Neutral-current NSI in Sun

2-flavor model

• Measurement:
$$P(\nu_e \rightarrow \nu_e) = \frac{1}{2} [1 + \cos 2\theta \cos 2\theta_m]$$

 $\varepsilon' = \sin^2 \theta_{23} \varepsilon_{\tau\tau}^{dV} - \varepsilon_{ee}^{d}$

•
$$\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e - \varepsilon' N_d)}{[\Delta m^2]_{matter}}$$

• $[\Delta m^2]_{matter}^2 = [\Delta m^2 \cos 2\theta - 2\sqrt{2}EG_F(N_e - \varepsilon' N_d)]^2 + [\Delta m^2 \sin 2\theta + 4\sqrt{2}\varepsilon EG_F N_d]^2$

How well could DUNE do?

- SNO+SK detected ~80,000 v's
- Assume best-case 15,000 solar v's per 10 kt·year detected in DUNE
 - $E_{\nu}^{mean} = 8 \text{ MeV} (E_{\nu is}^{threshold} = 3 4 \text{ MeV})$
 - Ignore systematics
- Assume SNO+SK uncertainties for 80,000 solar v's in DUNE
 - Scale as $\sqrt{\nu}$
 - Place at 8 MeV

How well could DUNE do?

• ~40 kt·years of DUNE could already validate SNO+SK

exposure	years	statistics (relative to SNO+SK)	uncertainty
10 kt·years	1 (1 module)	0.19	2.3 σ _{SNO+SK}
40 kt∙years	1 (4 modules)	0.75	1.2 σ_{SNO+SK}
160 kt∙years	4 (4 modules)	3	0.58 σ_{SNO+SK}
400 kt∙years	10 (4 modules)	7.5	0.37 σ_{SNO+SK}
1,600 kt·years	40 (4 modules)	30	0.18 σ _{SNO+SK}

Statistical analysis for DUNE

- Estimating sensitivity
 - Assume we observe SM prediction
 - What NSI we allow/exclude?
- Use this negative log likelihood

•
$$NLL = -2 \log \mathcal{L} = \sum_{i=1}^{N} \frac{\left(P_i^{SM} - P_i^{NSI}\right)^2}{\sigma_i^2}$$

- Allowed NSI to $1\sigma,\,90\%$ CL, $2\sigma,\,99\%$ CL, 3σ
 - *NLL* < 2.30, 4.61, 6.18, 9.21, 11.83
 - Critical values from 2-df χ^2 distribution

Differential ES cross section

 Taken from Fundamentals of Neutrino Physics and Astrophysics by C. Giunti and C.W. Kim

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T_e}(E_\nu, T_e) = \frac{\sigma_0}{m_e} \left[g_1^2 + g_2^2 \left(1 - \frac{T_e}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e T_e}{E_\nu^2} \right] \qquad \qquad T_e^{\max}(E_\nu) = \frac{2 E_\nu^2}{m_e + 2 E_\nu}$$

$$\sigma_0 = \frac{2 \, G_{\rm F}^2 \, m_e^2}{\pi} \simeq 88.06 \times 10^{-46} \, {\rm cm}^2 \qquad \qquad m_e = 0.511 \, {\rm MeV}$$
$$g_1^{(\nu_e)} = g_2^{(\bar{\nu}_e)} = 1 + \frac{g_V^l + g_A^l}{2} = 1 + g_L^l = \frac{1}{2} + \sin^2 \vartheta_{\rm W} \simeq 0.73$$

$$g_2^{(\nu_e)} = g_1^{(\bar{\nu}_e)} = \frac{g_V^l - g_A^l}{2} = g_R^l = \sin^2 \vartheta_W \simeq 0.23$$

Elastic scattering of solar neutrinos in DUNE

- Below $E_{\nu_e} = 7$ MeV will have more ES interactions in Ar
- Close to threshold, but...

CC and 18·ES cross sections cross at ~7 MeV

07/07/2023

07/07/2023

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado (2018) arXiv:1805.04530

Parameter definitions

- Matter Hamiltonian $H_{\text{mat}}^{\text{eff}} = \sqrt{2}G_F N_e(x) \begin{bmatrix} c_{13}^2 & 0\\ 0 & 0 \end{bmatrix} + \begin{bmatrix} \xi^p + Y_n(x)\xi^n \end{bmatrix} \begin{pmatrix} -\varepsilon_D^\eta & \varepsilon_N^\eta\\ \varepsilon_N^{\eta*} & \varepsilon_D^\eta \end{pmatrix} \end{bmatrix}$
- Diagonal and non-diagonal NSI

$$\begin{aligned} \varepsilon_D^{\eta} &= c_{13} s_{13} \operatorname{Re} \left(s_{23} \varepsilon_{e\mu}^{\eta} + c_{23} \varepsilon_{e\tau}^{\eta} \right) - \left(1 + s_{13}^2 \right) c_{23} s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^{\eta} \right) \\ &- \frac{c_{13}^2}{2} \left(\varepsilon_{ee}^{\eta} - \varepsilon_{\mu\mu}^{\eta} \right) + \frac{s_{23}^2 - s_{13}^2 c_{23}^2}{2} \left(\varepsilon_{\tau\tau}^{\eta} - \varepsilon_{\mu\mu}^{\eta} \right) \\ \varepsilon_N^{\eta} &= c_{13} \left(c_{23} \varepsilon_{e\mu}^{\eta} - s_{23} \varepsilon_{e\tau}^{\eta} \right) + s_{13} \left[s_{23}^2 \varepsilon_{\mu\tau}^{\eta} - c_{23}^2 \varepsilon_{\mu\tau}^{\eta*} + c_{23} s_{23} \left(\varepsilon_{\tau\tau}^{\eta} - \varepsilon_{\mu\mu}^{\eta} \right) \right] \end{aligned}$$

 Assumed usual NSI couplings can be factorized into neutrino and charged-fermion parts

$$\varepsilon_{\alpha\beta}^{f} \equiv \varepsilon_{\alpha\beta}^{f,L} + \varepsilon_{\alpha\beta}^{f,R} = \varepsilon_{\alpha\beta}^{\eta} \xi^{f} \qquad \xi^{p} = \sqrt{5} \cos \eta$$
$$\xi^{n} = \sqrt{5} \sin \eta$$

Neutrinos in LZ

- ⁸B neutrinos via CEvNS
 - CEvNS (nuclear) recoils look exactly like WIMP recoils ($m_{\chi} \approx 6 \text{ GeV}$)
 - Expect few events
 - Have not been observed yet
 - important measurement
- Many other neutrinos will interact in LZ
 - What can we learn from them?

B solar vs

S1c [phd]

4.5

 $^{8}B + hep$

10

.og10(S2c [phd])

48

What can LZ do?

- Not seeing reactor neutrinos
 - Not many reactors around
 - Detector not big enough
 - Cannot improve KamLAND measurement
- Expect to see many solar neutrinos
 - More matter effect from high solar density
 - Interested to pursue this

Deep Underground Neutrino Experiment

- 40 kt of liquid argon
 - Staged
- First couple years assume 40 kt-years
- Solar neutrinos via CC
- Possible module with low-threshold (~100 keV) 05.0 ^G 1 kt of liquid argon
 - Solar neutrinos via ES
- E. Church, C. Jackson, R. Saldanha (2020) arXiv:2005.04824

Not strong early constraint due to high threshold

2.5

5.0

7.5 10.0 12.5 15.0 17.5 20.0

neutrino energy (MeV)

0.35

0.25

දි 0.20 Ę 0.15

0.10 0.05 0.00 ∔ 0.0

Hyper-Kamiokande

- 217 kt of water
 - 2nd module may be added
- Assume 4 years of statistics
- Solar neutrinos via ES
 - Recent Super-K analysis with 3.5-MeV threshold

Very strong constraint due to high statistics (no systematics or backgrounds here)

