Constraints on Sterile Neutrino Evidence, Light Neutralino and LSND with KARMEN1+2

Juergen Reichenbacher

South Dakota School of Mines & Technology (SDSMT)

CETUP 2023 at Lead/Deadwood Middle School THE INSTITUTE For Underground Science at SURF July 3, 2023

KARMEN at ISIS Neutron Spallation Source at Rutherford-Appleton-Laboratory in Oxford/UK

- > 800 MeV protons with rapid cycling synchrotron (200 uA, 50 Hz, 20 ms beam periods)
- > KARMEN detector was located at 17.5 m from main target (uranium/tantalum) at 90 degrees towards beamline

7/3/2023

Neutrinos from Well-Defined Decay at Rest

(negative pions undergo nuclear capture in high Z target; contamination o(10^-4))

$$\begin{array}{ll} \pi^+ \longrightarrow \mu^+ + (\overline{\nu_{\mu}}) & \tau = 2.6 \cdot 10^{-8} \varepsilon \\ \downarrow & \\ e^+ + (\overline{\nu_e}) + (\overline{\bar{\nu}_{\mu}}) & \tau = 2.2 \cdot 10^{-6} \varepsilon \end{array}$$

Isospin Triplet A=12

KARMEN Detector (56t Liquid Scintillator) @ 17.5 m

KARMEN Outer Veto Upgrade (1995-1997) Marking Beginning of KARMEN2 (Ran until 2001)

Measured Pure Electron-Neutrinos in Spectroscopic Quality via CC Sequence

Measured Neutrinos in Prompt Single-Events (NC+CC)

7/3/2023

Measured Electron-Neutrinos in Prompt Single-Events (K2)

No excess above 38 MeV in single prompt events (only 2.2 MeV Q-value for inclusive CC on 13C)

 \Rightarrow No Hint for Appearance $v_{\mu} \rightarrow v_{e}$

2-flavor formalism:
$$\begin{pmatrix} |\nu_{\alpha}\rangle \\ |\nu_{\beta}\rangle \end{pmatrix} = \begin{pmatrix} \cos\Theta & \sin\Theta \\ -\sin\Theta & \cos\Theta \end{pmatrix} \cdot \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

The probability \mathcal{P} for the oscillation $\nu_{\alpha} \rightarrow \nu_{\beta}$ in vacuum is then given by:

$$\mathcal{P}(|\nu_{\alpha}\rangle \to |\nu_{\beta}\rangle) = |\langle \nu_{\beta} | \nu_{\alpha}(x = L, t) \rangle|^{2}$$

= $\sin^{2}(2\Theta) \cdot \sin^{2}\left(\frac{1.27 \cdot \Delta m^{2}[eV^{2}] \cdot L[m]}{E_{\nu}[MeV]}\right)$

with
$$\Delta m^2 = |m_1^2 - m_2^2|$$

Juergen Reichenbacher (SD Mines)

9

New KARMEN2 Result from Single Prompt Events

Juergen Reichenbacher (SD Mines)

7/3/2023

Phys.Rev.D65:112001,2002 Reichenbacher PhD Thesis, FZKA Report 7093

10

Good Agreement with Predictions! Limit on Sterile Neutrinos from nue->nus

7/3/2023

KARMEN1+2 Can Exclude Global Fit Evidence Regions for Sterile Neutrinos at More than 2sigma !

2306.09962.pdf (arxiv.org)

(Done at CETUP 2023 workshop!)

assuming CPT conservation

KARMEN1+2 Can Exclude Global Fit Evidence Regions for Sterile Neutrinos at More than 2sigma !

2306.09962.pdf (arxiv.org)

assuming CPT conservation

KARMEN1+2 Can Exclude Global Fit Evidence Regions for Sterile Neutrinos at More than 2sigma !

2306.09962.pdf (arxiv.org)

assuming CPT conservation

KARMEN Time-Anomaly between 3us and 4us

Juergen Reichenbacher (SD Mines)

16

Matched Neutron Cross Section Minima in Iron with Neutron Velocities from Main and Pre-Targets!

Fitted Beam-Correlated Neutron Background in KARMEN1 and KARMEN2 (After Veto Upgrade)

KARMEN Exclusion Limit on Light Neutralino (pi+ -> mu+ + X)

Juergen Reichenbacher (SD Mines)

LSND Detector Location wrt. Target at LANSCE

LSND detector has comparable shielding, neutrons could cause increase in random background for neutron sequence search

FIG. 1: The layout of the LSND detector and the A6 beam stop area.

600us wide proton pulses do not allow for muon lifetime resolution (no "time-anomaly" detectable)

ascertained random background from mostly beam off data ⇒ underestimated beam-correlated neutron background? ⇒ or is nuebar contamination

⇒ or is nuebar contamination underestimated?

FIG. 2: The layout of the A6 beam stop, as it was configured for the 1993-1995 data taking.

7/3/2023

Juergen Reichenbacher (SD Mines)

arXiv:hep-ex/0104049v3 10 Aug 2001 20

MicroBooNE Result vs. LSND w/ KARMEN2

2210.10216.pdf (arxiv.org)

Degeneracy of MicroBooNE Result

2210.10216.pdf (arxiv.org)

=> New stringent KARMEN1+2 limit on nue disappearance (CPT conservation) could rule out LSND regions together with MicroBooNE!

7/3/2023

Acknowledgements

CETUP 2023 organizers Barbara and Jaret

Backup Slides

MicroBooNE vs MiniBooNE

2210.10216.pdf (arxiv.org)

Theoretical Cross Section Calculations

Author		Type of Model	$\langle \sigma(^{12}C(\nu_e, e^-)^{12}N_{g.s.})\rangle [10^{-42} cm^2]$
Kolbe	[Kol99]	CRPA	8.9
Auerbach(SIII)	[Aue97]	RPA	10.1
Vogel	[Vog96]	$_{\rm SM}$	9.1
Volpe	[Vol01]	$_{\rm SM}$	8.1
Hayes	[Hay00]	$_{\rm SM}$	7.9
Donnelly	[Don91]	$_{\rm SM}$	9.4
Fukugita	[Fuk88]	EPT	9.1(9)
Mintz	[Min93]	EPT	8.0

Table 3.4: Comparison of theoretical calculations of the cross section $\langle \sigma \rangle$ for the exclusive CC-reaction ${}^{12}C(\nu_e, e^-){}^{12}N_{g.s.}$.

Theoretical Cross Section Calculations Ratio NC/CC and mu – e – Universality Validation

	Cut	K1	K2	K1 + K2
$\langle \sigma(^{12}C(\nu,\nu'))^{12}C^*) \rangle [10^{-42} cm^2]$	standard	10.4 ± 0.4	10.0 ± 0.8	10.2 ± 0.4
$\langle \sigma(^{12}C(\nu,\nu')^{12}C^*) \rangle \ [10^{-42} cm^2]$	full fid.	11.1 ± 0.4	10.7 ± 0.4	10.9 ± 0.3
$\langle \sigma(^{12}C(\nu_e, e^-))^{12}N_{g.s.} \rangle [10^{-42} cm^2]$	standard	9.9 ± 0.5	9.1 ± 0.5	9.6 ± 0.3
$\langle \sigma(^{12}C(\nu_e, e^-))^{12}N_{g.s.})\rangle [10^{-42} cm^2]$	full fid.	10.8 ± 0.6	9.9 ± 0.6	10.4 ± 0.4
$R = \langle \sigma^{NC} \rangle / \langle \sigma^{CC}_{gs} \rangle$	standard	1.05 ± 0.06	1.09 ± 0.10	1.07 ± 0.06
$R = \langle \sigma^{NC} \rangle / \langle \sigma^{CC}_{gs} \rangle$	full fid.	1.04 ± 0.07	1.08 ± 0.08	1.05 ± 0.05

Table 3.13: Measured values of the cross sections for the inclusive NC-reaction ${}^{12}C(\nu, \nu'){}^{12}C^*$, the exclusive CC-reaction ${}^{12}C(\nu_e, e^-){}^{12}N_{g.s.}$ and the corresponding ratio $R = \langle \sigma^{NC} \rangle / \langle \sigma_{gs}^{CC} \rangle$ in dependence of the applied cuts (standard cuts for each of the two reactions as introduced in this thesis and moreover a full fiducial cut with $|X_{pr}| < 150 \text{ cm}$, $1.5 < ROW_{pr} \leq 31.5$, $1.5 < COL_{pr} \leq 15.5$ and only good modules if $|X_{pr}| > 100 \text{ cm}$). The values for K1 and K2 are always added flux-and efficiency-weighted in order to derive the corresponding global value for KARMEN (K1 + K2).

Author		Type of Model	$R = \langle \sigma^{NC} \rangle / \langle \sigma^{CC}_{gs} \rangle$
Kolbe	[Kol99]	CRPA	1.18
Vogel	[Vog96]	\mathbf{SM}	1.08
Donnelly	[Don91]	\mathbf{SM}	1.27
Fukugita	[Fuk88]	EPT	1.07
Mintz	[Min93]	EPT	1.23

Table 3.14: Comparison of theoretical calculations for the flux-independent ratio $R = \langle \sigma^{NC} \rangle / \langle \sigma^{CC}_{gs} \rangle$ of the cross sections for the NC-reaction ${}^{12}C(\nu,\nu'){}^{12}C^*$ and the exclusive CC-reaction ${}^{12}C(\nu_e, e^-){}^{12}N_{g.s.}$.

Juergen Reichenbacher (SD Mines)

27

Good Agreement with Predictions! 7.3 eV^2 Visual Check

7.3 eV^2 Visual Check at Different Baselines

7/3/2023