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Searches for Axion-like Particles
QCD Axions DM Axions

Dynamically relax CP 
violation in QCD

Long Lived ~ Age of Universe

EW couplings arise 
easily and make for 
sensitive probes
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QCD Axions and Axion-like Particles
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Canonical Axion-photon detection schemes
Sikivie, 1983
● Coherent conversion in 

EM Field
● Helioscopes, Haloscopes

Buchmuller, Hoogeveen 1990
● Coherent Bragg-Primakoff 

conversion
● Light-shining-through-wall (LSW)
● Solar Axions
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Solar Axions ABC Processes: Axio-electric, Compton, Brem
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Solar Axions ABC Processes: Axio-electric, Compton, Brem

Primakoff Scattering
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Solar Axions

57Fe / nuclear de-excitation

ABC Processes: Axio-electric, Compton, Brem

Primakoff Scattering
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Inverse Primakoff Scattering
● Atomic coherence:

● q << 1/R
●

● Forward scattering, elastic:

Atomic Form Factor
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Bragg-Primakoff Scattering: Crystal Structure

  

      ~           Reciprocal Interatomic Distance 
 → Momentum Transfer Scale ~ keV

Discrete
Fourier Transform
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Bragg-Primakoff Scattering
Coherence

Laue Condition 

Bragg Condition (Elasticity)

astro-ph/9811359

Coherence
Momentum sum Solar axion 

flux cross section
Structure factor Detector 

response
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Bragg-Primakoff Scattering: Solar ALP Limits

NaI

Ge

Phys. Rev. Lett. 129, 081803  (Majorana Demonstrator)
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Wait a minute...something is broken
Light-shining-through-

wall (LSW) theory Solar ALP Theory

Dependence on attenuation depth No Dependence on attenuation 
depth
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Buchmuller, Hoogeveen:

Laue-type scattering considered in 2017:
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What is coherence??

Incoherent piece Coherent piece 

ALP momentum k Photon 
momentum k′

Sum over 
lattice centers

Coherence Possible If…
(a)
(b)
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What is coherence??
1

Math math math 
math math...

With this treatment of coherence, we recover the canonical 
solar axion Bragg-Primakoff Event Rate
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Ok, now with absorption Place Atomic Target in 
Background Dielectric of 

the Crystal Bulk
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Ok, now with absorption Place Atomic Target in 
Background Dielectric of 

the Crystal Bulk

New attenuation term
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Borrmann Effect of Anomalous Absorption

● Borrmann, Batterman (1961), Wagenfield (1987), Biagini (1990)...
● An anomalous decrease of the absorption coefficient  → increase in the 

mean free path / attenuation length
● Depends on imaginary form factor

● Lifts some of the coherence suppression!
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Borrmann Effect of Anomalous Absorption

Suppression lifted for 
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Modified Event Rate Numerically compute 
this on a lattice

The effect is that our event rate gets attenuated by I
Absorption leads to a loss of coherence
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Absorption Sum: Magic Angles?



  22

Modified Event Rate: By Angles
● Solar angle traces a 

trajectory throughout the 
day

● Seasonal + daily 
modulations

● Time dependence is a 
good discriminator + a 
potential lever to 
minimize the 
absorption suppression 
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Modified Event Rate: Energy / Time
● Solar angle traces a 

trajectory throughout the 
day

● Seasonal + daily 
modulations

● Time dependence is a 
good discriminator + a 
potential lever to 
minimize the 
absorption suppression 
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Experimental Prospects

Question: How big do we have to get to probe beyond the HB 
stars constraints?
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Sensitivities: With Absorption
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Cooling Hints as a Bonus
Gianotti, Irastorza, Redondo, Ringwald 1512.08108
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Sensitivities: With Cooling Hints

10−4 10−3 10−2 10−1 100 101 102 103

ma (eV)

10−11

10−10

10−9

g a
γ

(G
eV
−1

)

HB/RG Hints (1σ)

D
F

SZ
I

K
SV

Z
E
/N

=
44
/3

K
SV

Z
E
/N

=
2

HB Stars

CAST

XENONnT

BabyIAXO

SuperCDMS

LEGEND-200

LEGEND-1000

SABRE

50 ton-year NaI

50 ton-year CsI



  28

Sensitivities: Can we get there?
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Takeaway
● Coherent scattering relies on vanishing phases in the 

matrix element sum
● These terms depend on the wave functions of the in and 

out states – photon out states get attenuated in a 
dielectric

● This hasn’t been accounted for in solar axion Bragg-
Primakoff searches!

● We want sensitivity to QCD axions beyond the HB stars 
constraints, but we’ll need clever thinking to properly 
utilize the technology we have to get there
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Backup Deck
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Solar Axion Searches at LXe
Dent, Dutta, Newstead, Thompson Phys.Rev.Lett. 125 (2020) 13, 131805
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Sensitivities: With DM Bounds
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Solar Fluxes for Massive ALPs
● Primakoff:
● Photon Coalescence (more important for > keV ALPs):


