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Direct Detection
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Challenges

via LUX-LZ (kipac.stanford.edu/research/topics/direct-dark-matter-detection)
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Bigger = harder 
… and there’s only so much Xe 

Dark matter is slow. 
… and worse, may also be light 

Neutrino fog. 
… in this talk, not a feature 
(See Nityasa’s talk)  

Overburden/ceiling 
… e.g. Jason & Chris talks
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This is a neutron star

The Little Prince, A. St.-Exupery via The Atlantic

Component YT hnTi pF [MeV] EF

e� 0.06 ... 146 ...

µ� 0.02 ... 50 ...

p+ 0.07 ... 160 ...

n 0.93 ... 373 ...

Table 1: Components of a neutron star in the Brussels–Montreal BSk-24 model according to their abun-
dance normalized to neutrons, YT, average number density hnTi, Fermi three-momentum pF, and Fermi
energy EF [39]. [Flip: Aniket, please fill these in.]

2 Neutron Star Model and Conventions125

We model the neutron star with the Brussels–Montreal unified equation of state BSk-24 [39].
This assumes that neutrons, protons, electrons, and muons are the sole stellar constituents. We
use the following benchmark values for the neutron star mass, radius, and ambient dark matter
density [40]:

M? = 1.5 M� R? = 12.6 km ⇢� = 0.4 GeV/cm3 . (2.1)

We assume that the neutron star is e↵ectively at rest relative to the dark matter halo. For each
target particle T, the BSk-24 model provides a volume-averaged number per nucleon, YT, which
we relate to an average number density

hnTi = YT
M?

mn

✓
4

3
⇡R3

?

◆�1

. (2.2)

The target particles in the neutron star are degenerate: their chemical potentials, µT ⇠ O(100 MeV),126

are all much greater than the neutron star temperature, T? ⇠ O(eV). We thus assume that the127

energy levels for each target are filled to its Fermi energy, EF. These properties are summarized128

in Table 1.129

The relativistic treatment of capture requires relating kinematic quantities that are naturally130

defined in di↵erent frames. In order to simply notation, we assume a quantity is in the neutron131

star frame unless otherwise identified with a subscript, e.g. (d�)CM is a cross section in the center132

of mass frame. We explain addition conventions in Appendix A; these are mostly for the technical133

work in the appendics.134

3 Review of Dark Kinetic Heating135

We summarize the relevant background material for the kinetic heating of neutron stars from dark136

matter capture [1]. .137
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Pretty big, pretty dense. 
Full of n. Also e- . 
(also lots of other stuff)

Julie Peasley, particlezoo.net

Excellent direct detection 
target. What detector? 

Particle physicist’s view

n e-

… see Zaki’s talk
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Neutron stars as a laboratory
Dark Matter Kinetic Heating

7

Dark matter captures on neutron star, deposits its 
kinetic energy, raises star temperature.
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Dark Kinetic Heating of Neutron Stars and An Infrared
Window On WIMPs, SIMPs, and Pure Higgsinos

Masha Baryakhtar,1 Joseph Bramante,1 Shirley Weishi Li,2 Tim Linden,2 and Nirmal Raj3

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada
2CCAPP and Department of Physics, The Ohio State University, Columbus, OH, 43210, USA

3Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA

We identify a largely model-independent signature of dark matter interactions with nucleons and
electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed
of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared
blackbody temperatures. The resulting radiation could potentially be detected by the James Webb
Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This
mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emis-
sion near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass
dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent
dark matter-nucleon cross-sections exceeding 2 ⇥ 10�45 cm2, with improved sensitivity after more
telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with
dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly
with mass as a result of needing multiple scatters for capture. Future observations of dark sector-
warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats
neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic
scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

Despite ongoing searches, the identity of dark matter
remains a mystery. Terrestrial detectors looking for dark
matter impinging on known particles have found no dark
sector scattering events in up to a hundred kilogram-
years of data. While some dark matter models have been
excluded by these searches, many well-motivated candi-
dates remain untested. Earthbound direct detection is
considerably less sensitive to dark matter that couples to
Standard Model particles primarily through inelastic or
spin-dependent interactions, as well as dark matter much
heavier or lighter than the nuclear mass of silicon, argon,
germanium, xenon, or tungsten.

This letter demonstrates that the aggregate impact of
dark matter falling onto neutron stars results in thermal
emission detectable with imminent telescope technology.
Detecting or constraining dark matter using nearby neu-
tron stars requires dedicated search strategies and ob-
servation times a few orders of magnitude beyond stan-
dard surveys. In addition, locating an old neutron star
within fifty parsecs of Earth, where ⇠ 100 old neutron
stars reside, may be critical to near-future searches for
dark kinetic heating. We will show that such e↵orts are
warranted by the extraordinary sensitivity dark kinetic
heating has for a broad variety of dark matter models.

A compelling insight developed in the remainder of this
document is that any appreciable dark matter interac-
tions with Standard Model particles will heat neutron
stars, through the deposition of kinetic energy that dark
matter gains falling into steep neutron star gravitational
potentials. This dark kinetic heating of neutron stars de-
pends only on the total mass of accumulated dark matter,
and is therefore sensitive to dark matter masses spanning
dozens of orders of magnitude. As a consequence, dark
kinetic heating of neutron stars provides a powerful com-
plement to, and indeed could surpass, terrestrial direct

detection searches for dark matter interactions. This ap-
proach can be compared to prior work on dark matter in
compact stars, which examined dark matter that heats
white dwarfs and neutron stars by annihilating in their
cores, e.g. [1–6].
1. Dark kinetic heating. The flux of dark matter

through a neutron star depends upon the maximum im-
pact parameter for which dark matter in the halo in-
tersects a neutron star with mass M and radius R [7],

bmax =
⇣

2GMR
v2
x

⌘1/2 �
1� 2GM

R

��1/2
, where G is New-

ton’s constant, and vx is the velocity of the dark matter.
The total mass rate of dark matter passing through the
neutron star is then

ṁ = ⇡b2maxvx⇢x, (1)

where ⇢x is the ambient density of dark matter. Us-
ing a best-fit dark matter density and halo velocity
⇢x ⇠ 0.42 GeV cm�3, vx ⇠ 230 km s�1 [8], we find that
for neutron stars near Earth, ṁ ⇠ 4⇥ 1025 GeV s�1.
The total kinetic energy that can be deposited by dark

matter is, to good approximation, given by dark matter’s
kinetic energy at the surface of the neutron star

Es ' mx (� � 1) , (2)

where for a typical neutron star � ⇠ 1.35. Then the rate
of dark kinetic energy deposition is given by

Ėk =
Esṁ

mx
f ' 1.4⇥ 1025 GeV s�1

✓
f

1

◆
, (3)

where f 2 [0, 1] is the fraction of dark particles passing
through the star that become trapped in the neutron star
interior. This fraction depends on the cross-section for
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Detector

9

Detect radio pulses to 
identify nearby, old 
neutron stars. 

Expect: ~100 w/in 50 pc

James Webb

7⇥ 104 sec

✓
d

10pc

◆4

for 2! sensitivity

kinetic heating

1750 K(1.5 solar mass, 10 km star)

Thirty Meter

105 sec

✓
d

10pc

◆4

Observation times

Image credits: FAST, JWST websites

James Webb

Thirty Meter 

European Extremely Large

CHIME

100 old, cold neutron stars  
in the local 50 pc.

O. Blaes, P. Madau (1993)

 Observation prospects
Infrared telescopes 

(design: exoplanet atmosphere study) 

2025

2021

2027

Radio telescopes 
(design: pulsar discovery) 

FAST James Webb

Thirty Meter 

European Extremely Large

CHIME

100 old, cold neutron stars  
in the local 50 pc.

O. Blaes, P. Madau (1993)

 Observation prospects
Infrared telescopes 

(design: exoplanet atmosphere study) 

2025

2021

2027

Radio telescopes 
(design: pulsar discovery) 

FAST

FAST
James 
Webb

Measure temperature 
with infrared telescopes.

For 2σ:

… and you may only need one.

pulsars

exoplanets
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1000 K (20 Myr) 
100 K (Gyr)

extra credit 
not in this talk

Figure 2: Pauli Blocking [Flip: fill in caption]

f is the dark matter capture e�ciency. The central result of this manuscript is to calculate f for
dark matter scattering on degenerate, relativistic targets. The energy deposited in the neutron
star is converted into a kinetic heating of the apparent blackbody temperature

Tkin = 1600 f 1/4 K . (3.5)

A O(109 year)-old neutron star is expected to cool to O(100 K) [42, 43]. The measurement of145

kinetic heating above the expected neutron star luminosity by an infrared telescope is a smoking146

gun signature for dark matter–visible matter interactions.147

3.3 Capture of Dark Matter148

The possibility that dark matter may capture on celestial objects has long been an opportunity149

for the indirect detection of dark matter’s annihilation products [44,45], see e.g. [46] for a detailed150

treatment. Studies of kinetic heating focus on captured dark matter because this population has151

contributed its entire kinetic energy towards heating. We ignore dark matter that scatters but152

does not capture; this is a conservative simplification. It is also possible that captured dark matter153

may subsequently annihilate within the neutron star, converting its mass energy into additional154

heating [1, 2, 13]. There are two conditions for dark matter to capture in a celestial object like a155

neutron star:156

1. The dark matter–target scattering cross section is large enough for a transiting dark matter157

particle to interact with the target particles. This means that over the transit time �t across158

the star, there are a su�cient number of interactions, d� vrelhnTi�t.159

2. The dark matter particle loses enough energy from scattering that is is unable to escape the160

gravitational potential of the capturing object. This means that by the time it exits the star,161

the dark matter has lost its asymptotic initial kinetic energy. E↵ectively this means that its162

radial velocity is less than the star’s escape velocity at some point of its transit.163

In the non-relativistic treatment of dark matter capture in neutron stars, the first condition164

is diagnosed by comparing the dark matter–target cross section to a threshold cross section (or165

saturation cross section) above which all dark matter is assumed to capture. The second condition166

is determined by the kinematics of a fixed-target experiment wherein incident dark matter that167

has been gravitationally accelerated hits a stationary target in the neutron star rest frame.168

These conditions are more nuanced for relativistic, degenerate targets like electrons in a neutron169

star. Because the targets are relativistic, they are not at rest in the neutron star frame where energy170

6

(old and cold)

f: capture fraction relative to geometric cross 
section; same as the f in Jason’s talk
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How much heating?

11bmax: see your favorite GR text

a four-momentum. This slightly unconventional choice simplifies the visual interpretation of the492

expressions in these appendices.493

We use natural units throughout this document. Physical velocities of particles are written494

as v, for example vhalo is the asymptotic velocity of dark matter in the halo as measured in the495

neutron star frame. The boost factor to the dark matter rest frame is �halo = (1� v2halo)
�1/2.496

B Some useful derivations497

B.1 Maximum impact parameter498

We derive bmax in (3.2). Ref. [1] attributes this result to Ref. [15], which in turn references a general
relativity textbook. Our treatment is based on the textbook by Hartle [58]. In the vicinity of the
neutron star the space is described by the Schwarzschild metric, which in spherical coordinates is

ds2 =

✓
1�

2GM

r

◆
dt2 �

✓
1�

2GM

r

◆�1

dr2 � r2d⌦2 . (B.1)

This space has two constants of motion coming from invariance along translations in time and the
polar direction:

" =

✓
1�

2GM

r

◆
dt

d⌧
` = r2 sin2 ✓

d�

d⌧
, (B.2)

where ⌧ is the proper time of a test particle. These are simply energy per unit mass and angular
momentum per unit mass. The normalization of a test particle‘s four-velocity, u↵u�g↵� gives

"

`2
=

1

`2
dr

d⌧
+

�
1� 2GM

r

�

r2
+

�
1� 2GM

r

�

`2
. (B.3)

The maximum impact parameter bmax corresponds to the distance at which a dark matter particle499

approaching with some initial velocity vhalo has a trajectory that is tangent to the neutron star:500

501

At the point of tangency, dr/d⌧ = 0 and r = R. Thus (B.3) gives

` = R

r
2GM

R

✓
1�

2GM

R

◆�1/2

. (B.4)

However, since ` is a constant of motion, we may set it to its initial value asymptotically far from502

the neutron star: ` = bmaxvhalo, from which we derive the expression for bmax.503

22

Figure 1: Velocities for dark matter capture. Define the various velocities, momenta, and boosts. [Flip:
rewrite caption]

3.1 Acceleration of Dark Matter138

A dark matter particle � in the halo is gravitationally accelerated toward a neutron star. At the
star’s surface, it has a radially inward trajectory with total energy, boost, and velocity

�escm� = m� +
2GM?m�

R?
�esc = 1.2 vesc = 0.6 , (3.1)

where m� is the dark matter mass. In this estimate we ignore the dark matter’s velocity in the139

halo, which is a negligible contribution its energy at the star’s surface. We use the fact that the140

escape velocity in a Schwarzschild background is identical to the Newtonian escape velocity; this141

accounts for the factor of two in the gravitational potential term of �escm� [41, ex. 9.1]. We depict142

these velocities and our conventions for the initial scattering state in Figure 1.143

3.2 Kinetic Heating144

The flux of dark matter onto the neutron star depends on the maximum impact parameter for
incident dark matter to intersect the star. [15],

bmax =
R?

vhalo

r
2GM?

R?

✓
1�

2GM?

R?

◆�1/2

= R?
vesc
vhalo

�esc , (3.2)

where vhalo = 7.7 ⇥ 10�4 is the dark matter velocity in the halo, asymptotically far from the
star. The expression for bmax follows from conservation of energy and angular momentum in a
Schwarschild metric, see Appendix B.1. The total dark matter mass passing through the neutron
star per unit time is then

Ṁ� = ⇡b2maxvesc⇢� ⇡ 3.1⇥ 1025
GeV

s
⇡ 55

g

s
. (3.3)

Over the age of the universe, this accreted dark matter density is negligible compared to the visible
matter species in a neutron star. However, this dark matter deposits a constant flux of kinetic
energy onto the neutron star that is converted into heat:

K̇ = (�esc � 1) Ṁf ⇡ 6.5⇥ 1024 GeV s�1 . (3.4)
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Over the age of the universe, this accreted dark matter density is negligible compared to the visible
matter species in a neutron star. However, this dark matter deposits a constant flux of kinetic
energy onto the neutron star that is converted into heat:

K̇ = (�esc � 1) Ṁf ⇡ 6.5⇥ 1024 GeV s�1 . (3.4)
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f is the dark matter capture e�ciency. The central result of this manuscript is to calculate f for
dark matter scattering on degenerate, relativistic targets. The energy deposited in the neutron
star is converted into a kinetic heating of the apparent blackbody temperature

Tkin = 1600 f 1/4 K . (3.5)

A O(109 year)-old neutron star is expected to cool to O(100 K) [42, 43]. The measurement of145

kinetic heating above the expected neutron star luminosity by an infrared telescope is a smoking146

gun signature for dark matter–visible matter interactions.147

3.3 Capture of Dark Matter148

The possibility that dark matter may capture on celestial objects has long been an opportunity149

for the indirect detection of dark matter’s annihilation products [44,45], see e.g. [46] for a detailed150

treatment. Studies of kinetic heating focus on captured dark matter because this population has151

contributed its entire kinetic energy towards heating. We ignore dark matter that scatters but152

does not capture; this is a conservative simplification. It is also possible that captured dark matter153

may subsequently annihilate within the neutron star, converting its mass energy into additional154

heating [1, 2, 13]. There are two conditions for dark matter to capture in a celestial object like a155

neutron star:156

1. The dark matter–target scattering cross section is large enough for a transiting dark matter157

particle to interact with the target particles. This means that over the transit time �t across158

the star, there are a su�cient number of interactions, d� vrelhnTi�t.159

2. The dark matter particle loses enough energy from scattering that is is unable to escape the160

gravitational potential of the capturing object. This means that by the time it exits the star,161

the dark matter has lost its asymptotic initial kinetic energy. E↵ectively this means that its162

radial velocity is less than the star’s escape velocity at some point of its transit.163

In the non-relativistic treatment of dark matter capture in neutron stars, the first condition164

is diagnosed by comparing the dark matter–target cross section to a threshold cross section (or165

saturation cross section) above which all dark matter is assumed to capture. The second condition166

is determined by the kinematics of a fixed-target experiment wherein incident dark matter that167

has been gravitationally accelerated hits a stationary target in the neutron star rest frame.168

These conditions are more nuanced for relativistic, degenerate targets like electrons in a neutron169

star. Because the targets are relativistic, they are not at rest in the neutron star frame where energy170

6
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f is the dark matter capture e�ciency. The central result of this manuscript is to calculate f for
dark matter scattering on degenerate, relativistic targets. The energy deposited in the neutron
star is converted into a kinetic heating of the apparent blackbody temperature

Tkin = 1600 f 1/4 K . (3.5)
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is determined by the kinematics of a fixed-target experiment wherein incident dark matter that167
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star. Because the targets are relativistic, they are not at rest in the neutron star frame where energy170
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Heavy dark matter does not 
transfer enough energy. 
(c.f. why we like Xenon)

…multiple scatters required to 
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B.2 Energy Transfer for a Non-Relativistic Target504

To assist in contrasting the relativistic and non-relativistic cases, we derive the energy transfer to
a non-relativistic target that is stationary in the neutron star frame, equation (5) in Ref. [1]. In
the neutron star frame, the incident dark matter has four-momentum kµ = (Ek,k) such that

k2 = E2
k �m2

� = (�esc � 1)m2
� =

v2esc
1� v2esc

m2
� �2esc =

1

1� v2esc
, (B.5)

where vesc is the escape velocity at the surface of the neutron star. Similarly, let pµ = (mT,0) be
the non-relativistic target four-momentum in the neutron star frame. Define � and �2 = (1� �2)
to be the boost parameter to the center of mass frame. The center of mass frame momenta are

kµ
CM =

0

@ � ���

��� �

1

A

0

@Ek

k

1

A pµCM =

0

@ � ���

��� �

1

A

0

@mT

0

1

A . (B.6)

The total three-momentum vanishes in the center of mass frame so that

pCM + kCM = 0 which gives � =
k

Eesc +mT
. (B.7)

The transferred four-momentum is qµCM = kµ
CM � k0µ

CM = (0,qCM)T . In the neutron star frame, the
energy transfer is

�E = q0 = �� · qCM =
�k · qCM

Ek +mT
=
�2mTk2 (1� cos )

(Ek +mT)2
, (B.8)

where  is the angle between the dark matter incoming and outgoing three-momenta in the center
of mass frame. We simplify this using

�2

Eesc +mT
=

Eesc +mT

m2
� +m2

T + 2�escm�mT
. (B.9)

The energy transfer to a non-relativistic target in the neutron star frame is

�E =
mTm2

�

m2
� +m2

T + 2�escm�mT

v2esc
1� v2esc

(1� cos ) , (B.10)

where vesc is the escape velocity so that in the v2esc ⌧ 1 limit the second factor reduces to v2esc.505

B.3 Estimate of the transit time506

To estimate the transit time of a radially in-falling dark matter particle through a neutron star,
we model the star as uniform density sphere so that its gravitational potential is

V (r) =
3GM?

2R?

✓
1�

r2

3R2
?

◆
. (B.11)

The dark matter velocity inside the star, v(r/R?) is approximated to be

v(x) =

p
V (x) (V (x) + 2)

V (x) + 1
x = r/R? . (B.12)

The transit time in natural units is thus

�t = 2R?

Z 1

0

dx

v(x)
⇡ 3.2 R? . (B.13)

23

Non-relativistic limit; n.b. saturates in large mX limit

• c.f. Jason & Chris talks
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loss is calculated. Instead, the dark matter–target scattering events have an ensemble of center-171

of-mass kinematic configurations against which the di↵erential cross section must be integrated.172

The Pauli exclusion principle introduces an additional conditions on the energy transfer: the173

outgoing target particle must scatter into phase space that is not filled with Fermi-degenerate174

states. In other words, chunks of phase space are Pauli blocked ; see Figure 2. Pauli blocking occurs175

for non-relativistic targets as well—for example, neutrons in the neutron star are degenerate, but176

have a Fermi momentum below their mass. However, relativistic targets have the additional nuance177

that the final state kinematics in the center of mass frame are not su�cient to determine if the178

given scattering is Pauli blocked since there is a non-trivial boost to the neutron star frame.179

3.4 Non-Relativistic Targets: Threshold Cross Section180

For non-relativistic targets, the threshold cross section is simply the geometric cross section of the
neutron star, ⇡R2

?, divided by the total number of target particles ⇡ M?/mT:

�thres. =
geometric cross section

number of targets
= ⇡R2

?

mT

M?
GeV . m� . 106 GeV . (3.6)

This expression is valid in a range of dark matter masses between the target Fermi energy and a181

maximum mass above which multiple scatters per transit are required for successful capture.182

For dark matter masses below O(GeV), Pauli blocking limits the available phase space: the
incident low-mass dark matter does not have enough kinetic energy to scatter a target particle
out of its degenerate Fermi surface. In this case only a fraction of the targets near a ‘skin’ of the
Fermi surface are accessible for scattering. This fraction is �p/pF where �p ⇡ (�x � 1)m�v� is the
maximum kinetic energy of the incident dark matter. Thus for this case

�Pauli
thres. =

1

3

pF
�p

�thres. ⇡
GeV

m�
�thres. m� . GeV . (3.7)

Conversely, for very heavy dark matter, the amount of energy transferred �E saturates to a
fixed value independent of its mass; see Appendix B.2. On the other hand, the kinetic energy
of the dark matter scales linearly with its mass. Thus in the heavy dark matter limit, a single
scatter is insu�cient to transfer the dark matter’s total kinetic energy to a target. In this case,
one requires multiple scatters to capture dark matter. The scaling yields

�multi
thres. ⇡

m�

106 GeV
�thres. 106 GeV . m� . (3.8)

In this manuscript we similarly examine the ‘phase space’ of dark matter capture on neutron183

stars from relativistic targets as a function of the dark matter mass. We demonstrate the principles184

that lead to an analogous low mass, intermediate mass, and high-mass scaling behaviors. However,185

for relativistic targets one requires a completely di↵erent formalism. For non-relativistic targets186

one may simply compare the total dark matter–target cross section to a threshold cross section;187

this is a notion that is well defined because the targets are all at rest relative to the neutron star.188

This assumption breaks down for the case of relativistic targets.189

4 Formalism for Relativistic Targets190

We systematically develop the relativistic formula for dark matter capture on a compact object191

with degenerate targets. Our expression is general and matches non-relativistic results in that limit.192
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interaction. This restricts the phase space to have a minimum energy transfer from the dark matter
to the target, �E, in the neutron star frame where the Fermi surface is spherically symmetric:

�E + Ep � EF > 0 df ⇠ ⇥ (�E + Ep � EF) , (4.7)

where Ep is the energy of the initial state target particle and EF is the Fermi momentum for the233

target species. This is straightforwardly applied as a step function in df . Figure 2 demonstrates234

why this treatment is necessary compared to the non-relativistic limit.235

4.4.2 Depleting the Kinetic Energy: Single Scatter Case236

The second capture condition is that the dark matter must transfer enough of its kinetic energy
in the scattering event. This is a matter of whether the outgoing dark matter particle has less
than the neutron star escape velocity at the point of scattering. This amounts to losing the kinetic
energy it had asymptotically far from the star:

�E ��Emin > 0 �Emin = Ehalo =
1

2
m�v

2
halo . (4.8)

For this manuscript we assume that dark matter–target scattering is elastic. Restricting to the
case where dark matter scatters only once in the neutron star, this tells us that the single-scatter
capture e�ciency is

df1 =d�CM vMøl dnT �t ⇥ (�E + Ep � EF) ⇥ (�E ��Emin) . (4.9)

4.4.3 Multiple Scattering237

The energy transfer condition (4.8) is modified when the transiting dark matter particle can scatters
more than once in the target volume of the neutron star. In that case it is su�cient for dark matter
to lose its asymptotic kinetic energy �Emin = Ehalo over multiple interactions over the course of
its entire transit through the star. The generalization of the condition (4.8) for Nhit scatters is

h�Ei �
�Emin

Nhit
> 0 , (4.10)

where h�Ei is the average energy transfer over all of the dark matter scatters. For a dark matter
particle that requires Nhit scatters to capture, each scatter must occur in a fraction of the total
transit time,

�tNhit
=

�t

Nhit
. (4.11)

We derive an estimate for total transit time, �t, in Appendix B.3. We assume that the dark matter238

takes a straight line path through the star with no significant deflection. This is a conservative239

estimate in that additional deflection in the star can increase the total transit time.240

A full treatment of the capture including multiple scatters accounts is computationally de-
manding. In order to impose (4.10) one must keep track of the transiting dark matter particle’s
scattering history. Further, one must take an appropriately weighted sum over possible number
of scatters Nhit; see Appendix C. To make the problem tractable, we make a conservative simpli-
fication and replace (4.10) with the stronger condition that each scatter must have at least the
minimum average energy to capture:

�E �
�Emin

Nhit
> 0 . (4.12)

10
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Abstract. Dark matter particles will be captured in neutron stars if they undergo scattering

interactions with nucleons or leptons. These collisions transfer the dark matter kinetic energy to

the star, resulting in appreciable heating that is potentially observable by forthcoming infrared

telescopes. While previous work considered scattering only on nucleons, neutron stars contain small

abundances of other particle species, including electrons and muons. We perform a detailed analysis

of the neutron star kinetic heating constraints on leptophilic dark matter. We also estimate the size

of loop induced couplings to quarks, arising from the exchange of photons and Z bosons. Despite

having relatively small lepton abundances, we find that an observation of an old, cold, neutron star

would provide very strong limits on dark matter interactions with leptons, with the greatest reach

arising from scattering o↵ muons. The projected sensitivity is orders of magnitude more powerful

than current dark matter-electron scattering bounds from terrestrial direct detection experiments.
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Abstract. Dark matter particles will be captured in neutron stars if they undergo scattering

interactions with nucleons or leptons. These collisions transfer the dark matter kinetic energy to

the star, resulting in appreciable heating that is potentially observable by forthcoming infrared

telescopes. While previous work considered scattering only on nucleons, neutron stars contain small

abundances of other particle species, including electrons and muons. We perform a detailed analysis

of the neutron star kinetic heating constraints on leptophilic dark matter. We also estimate the size

of loop induced couplings to quarks, arising from the exchange of photons and Z bosons. Despite

having relatively small lepton abundances, we find that an observation of an old, cold, neutron star

would provide very strong limits on dark matter interactions with leptons, with the greatest reach

arising from scattering o↵ muons. The projected sensitivity is orders of magnitude more powerful

than current dark matter-electron scattering bounds from terrestrial direct detection experiments.
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Figure 8: Contours of � = �th for leptophilic DM scattering o↵ electrons (blue), muons (light blue),

neutrons (green) and protons (yellow), corresponding to T1,th

kin
= 1700 K for the operators L5– L10.

Limits from the leading DD electron recoil experiments for heavy mediators are depicted as solid

lines, CDMS (brown), XENON10 (violet) and DarkSide-50 (orange) and the projected bounds for

DAMIC-M 1kg-year exposure as black dot-dashed lines. The solid teal lines are the upper limits

from XENON1T (SI and SD-neutron), PICO-60 (SD-proton) and the dashed lines are the projected

bounds for the DARWIN and PICO-500 experiments.

limits become comparable to the 1kg-year exposure of the DAMIC-M experiment for sub-GeV DM

and outperformed by XENON1T (SI) upper limits for m� & 10GeV. For the remaining scalar

operators, L2, L3 and L4, bounds from DM capture in NSs with any possible target surpass any

current and forthcoming terrestrial DD experiment.
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T O W A R D  D MSome configurations favor capture.
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Cross section depends on kinematics (frame)
Images: Aniket Joglekar
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Not a fixed target experiment
A matter of frame
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Figure 1: Velocities for dark matter capture. Define the various velocities, momenta, and boosts. [Flip:
rewrite caption]

3.1 Acceleration of Dark Matter138

A dark matter particle � in the halo is gravitationally accelerated toward a neutron star. At the
star’s surface, it has a radially inward trajectory with total energy, boost, and velocity

�escm� = m� +
2GM?m�

R?
�esc = 1.2 vesc = 0.6 , (3.1)

where m� is the dark matter mass. In this estimate we ignore the dark matter’s velocity in the139

halo, which is a negligible contribution its energy at the star’s surface. We use the fact that the140

escape velocity in a Schwarzschild background is identical to the Newtonian escape velocity; this141

accounts for the factor of two in the gravitational potential term of �escm� [41, ex. 9.1]. We depict142

these velocities and our conventions for the initial scattering state in Figure 1.143

3.2 Kinetic Heating144

The flux of dark matter onto the neutron star depends on the maximum impact parameter for
incident dark matter to intersect the star. [15],

bmax =
R?

vhalo

r
2GM?

R?

✓
1�

2GM?

R?

◆�1/2

= R?
vesc
vhalo

�esc , (3.2)

where vhalo = 7.7 ⇥ 10�4 is the dark matter velocity in the halo, asymptotically far from the
star. The expression for bmax follows from conservation of energy and angular momentum in a
Schwarschild metric, see Appendix B.1. The total dark matter mass passing through the neutron
star per unit time is then

Ṁ� = ⇡b2maxvesc⇢� ⇡ 3.1⇥ 1025
GeV

s
⇡ 55

g

s
. (3.3)

Over the age of the universe, this accreted dark matter density is negligible compared to the visible
matter species in a neutron star. However, this dark matter deposits a constant flux of kinetic
energy onto the neutron star that is converted into heat:

K̇ = (�esc � 1) Ṁf ⇡ 6.5⇥ 1024 GeV s�1 . (3.4)

5
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All quantities are assumed to be in the neutron star frame unless explicitly otherwise indicated by193

a subscript.194

4.1 Breakdown of the Non-Relativistic Treatment195

The use of a threshold cross section breaks down when the neutron star targets are relativistic.196

For example, the electron Fermi energy in a neutron star is much greater than its mass. The target197

particles are thus typically traveling near the speed of light. The energy transfer from the dark198

matter to the target depends on this initial state kinetic energy and so the capture rate depends199

on which piece of the ‘initial state phase space’ the target interacts with.200

Further, it is not possible to define a total cross section � that one may compare to any201

meaningful threshold, as is standard for non-relativistic targets (Section 3.4). Instead, one must202

calculate the di↵erential cross section d� with respect to the ‘initial state phase space’ of targets.203

What more, the center-of-mass dark matter–target cross sections must be boosted into the neutron204

star frame. This boost is not collinear with the collision axis so that the cross section is length205

contracted in a non-trivial way. This length contraction can be a significant e↵ect given the large206

boost between the neutron star and the target frames.207

One of the limitations of the non-relativistic approximation is seen in the expression for the208

number of captured dark matter particles, which depends on a ratio of cross sections. This is209

not Lorentz invariant as required. Our main result in this section is a careful derivation of a fully210

relativistic capture probability. In Ref. [14] we showed that the fully relativistic capture probability211

is many orders of magnitude larger than the non-relativistic approximation.212

4.2 Capture Probability213

Given some infinitesimal piece of the initial state and final state phase space, the di↵erential
capture e�ciency for an incident dark matter particle, df , is the total number scatters d⌫ with
the neutron star targets divided by the total number of incident dark matter particles dN� subject
to the kinematic conditions that the scatter leads to capture:

df =
d⌫

dN�

����
capture

. (4.1)

The integrated capture e�ciency is an expected number of scatters satisfying the capture condi-214

tions. When this number is less than one, it can be interpreted as a capture probability per dark215

matter particle. Each of the quantities df , d⌫, and dN� are Lorentz invariant.216

The number of scatters d⌫ of dark matter with density dn� on targets with density dnT and
relative velocity vrel is

d⌫ = d� vrel dnT dn� �V �t . (4.2)

Here �t ⇡ 3.2 R? [Flip: ANIKET: confirm this value, update appendix if necessary] is the typical transit
time of a dark matter particle through the star, which we estimate in Appendix B.3. The neutron
star volume is �V and relates the dark matter number density to the total number of dark matter
particles available to scatter in the star, dN� = dn��V . We thus write the di↵erential capture
e�ciency (4.1) as

df = d� vrel dnT �t |capture . (4.3)
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see, e.g. Cannoni 1605.00569 (but you probably saw this first in Gelmini & 
Gondolo “Cosmic abundances of stable particles,” 1990)

The capture conditions are restrictions on phase space based on the energy transfer, �E. These217

conditions are (i) overcoming Pauli blocking of the degenerate targets and (ii) the transferring218

enough energy that the scattered dark matter cannot escape the star’s gravitational potential. In219

order to computer df , one must be able to specify the quantities on the right-hand side in a single220

reference frame.221

4.3 Connecting Factors in Di↵erent Frames222

While df in (4.3) is Lorentz invariant and can be computed in any frame, its covariant factors are223

most naturally defined in di↵erent frames. Specifically, capture conditions and the target number224

density are most simply stated in the neutron star frame where the Fermi surface is spherical and225

the densities are uniform. In contrast, the cross section d� is typically calculated in the center of226

mass frame. The large boost between these frames are the origin of the dramatic results of our fully227

relativistic treatment of dark matter capture on relativistic targets compared to a non-relativistic228

approximation.229

We choose to calculate the right-hand side of (4.3) in the neutron star frame. The central
challenge, then, is to write the di↵erential cross section in this frame. Fortunately, this is a
standard result. The cross section in the center of mass frame, d�CM, is related to the cross section
in any frame, d�, by the Möller velocity, vMøl in that frame:

d� vrel = d�CM vMøl vMøl =

q
(p · k)2 �m2

Tm
2
�

EpEk
. (4.4)

This result is well known from the calculation of dark matter annihilation [47]; we refer to Ap-
pendix B.4 for a discussion based on a recent review [48]. Thus we write df in the neutron star
frame with respect to the center-of-mass cross section d�CM,

df = d�CM vMøl dnT �t |capture . (4.5)

To integrate df , one requires explicit factors enforcing the energy transfer conditions for capture.230

4.4 Energy Transfer Conditions231

The explicit factors in (4.5) determine the probability of scattering. The contribution of these
factors are subject to the condition that the scattering dark matter is captured by the neutron
star. The di↵erential capture e�ciency, df , should only be non-zero if the energy transferred �E
from the dark matter to the target (i) overcomes the Fermi degeneracy (Pauli blocking) of outgoing
target states and (ii) depletes the dark matter’s asymptotic kinetic energy so that it cannot escape
the star’s gravitational potential. These conditions are applied as step functions in the capture
e�ciency:

⇥(x) =

(
1 if x > 0

0 otherwise
. (4.6)

4.4.1 Degenerate Targets232

Because of the Fermi degeneracy of the neutron star, the outgoing target particle must have
momentum greater than the Fermi momentum, pF, or else the Pauli exclusion principle blocks the
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standard result. The cross section in the center of mass frame, d�CM, is related to the cross section
in any frame, d�, by the Möller velocity, vMøl in that frame:

d� vrel = d�CM vMøl vMøl =

q
(p · k)2 �m2

Tm
2
�

EpEk
. (4.4)

This result is well known from the calculation of dark matter annihilation [47]; we refer to Ap-
pendix B.4 for a discussion based on a recent review [48]. Thus we write df in the neutron star
frame with respect to the center-of-mass cross section d�CM,

df = d�CM vMøl dnT �t |capture . (4.5)

To integrate df , one requires explicit factors enforcing the energy transfer conditions for capture.230

4.4 Energy Transfer Conditions231

The explicit factors in (4.5) determine the probability of scattering. The contribution of these
factors are subject to the condition that the scattering dark matter is captured by the neutron
star. The di↵erential capture e�ciency, df , should only be non-zero if the energy transferred �E
from the dark matter to the target (i) overcomes the Fermi degeneracy (Pauli blocking) of outgoing
target states and (ii) depletes the dark matter’s asymptotic kinetic energy so that it cannot escape
the star’s gravitational potential. These conditions are applied as step functions in the capture
e�ciency:

⇥(x) =

(
1 if x > 0

0 otherwise
. (4.6)

4.4.1 Degenerate Targets232

Because of the Fermi degeneracy of the neutron star, the outgoing target particle must have
momentum greater than the Fermi momentum, pF, or else the Pauli exclusion principle blocks the
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All quantities are assumed to be in the neutron star frame unless explicitly otherwise indicated by193
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����
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. (4.1)
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The number of scatters d⌫ of dark matter with density dn� on targets with density dnT and
relative velocity vrel is
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particles available to scatter in the star, dN� = dn��V . We thus write the di↵erential capture
e�ciency (4.1) as
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Figure 3: Variables and angles

One may then sum over the number of hits required to scatter:
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Nhit
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✓
�E �

�Emin

Nhit

◆
⇥

✓
�Emin

Nhit + 1
��E

◆
⇥ (�E + Ep � EF) . (4.13)

A phase space region that captures after N hits is only counted in the term of the sum where241

Nhit = N ; this is imposed by the first two step functions.242

4.5 Capture Probability Formula243

The full expression for the di↵erential capture rate combines the base expression for df (4.3) that
enforces Pauli blocking (4.7) and the sum and over multiple scatters (4.13):
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X
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✓
�E �

Ehalo

Nhit

◆
⇥

✓
�Emin

Nhit + 1
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◆
⇥ (�E + Ep � EF) . (4.14)

It is convenient to explicitly write the center-of-mass cross section with respect to the kinematics
in that frame

d�CM =
d�CM

d⌦CM

d⌦CM d⌦CM = d↵ d(cos  ) . (4.15)

We write the di↵erential volume in the target’s momentum space as with respect to its Fermi
sphere,

dnT = hnTi
p2dp⌦F

VF
VF =

4

3
⇡p3F d⌦F = d' d(cos ✓) , (4.16)

where hnTi is the average target density in (2.2) and we write p = |p| to be the magnitude of the
target three-momentum. This is integrated up to pF, the Fermi three-momentum. The d' integral
is trivial. The final expression is

f =
X

Nhit

hnTi�t

Nhit

Z
d⌦F

Z pF

0

p2dp

VF

Z
d⌦CM

d�CM

d⌦CM

vMøl ⇥
3(�E) , (4.17)

where we use the shorthand notation ⇥3(�E) to indicate the step functions from Pauli blocking
and multiple scatters,

⇥3(�E) ⌘ ⇥

✓
�E �

Ehalo

Nhit

◆
⇥

✓
�Emin

Nhit + 1
��E

◆
⇥ (�E + Ep � EF) . (4.18)
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conditions are (i) overcoming Pauli blocking of the degenerate targets and (ii) the transferring218

enough energy that the scattered dark matter cannot escape the star’s gravitational potential. In219

order to computer df , one must be able to specify the quantities on the right-hand side in a single220

reference frame.221

4.3 Connecting Factors in Di↵erent Frames222

While df in (4.3) is Lorentz invariant and can be computed in any frame, its covariant factors are223

most naturally defined in di↵erent frames. Specifically, capture conditions and the target number224

density are most simply stated in the neutron star frame where the Fermi surface is spherical and225

the densities are uniform. In contrast, the cross section d� is typically calculated in the center of226

mass frame. The large boost between these frames are the origin of the dramatic results of our fully227

relativistic treatment of dark matter capture on relativistic targets compared to a non-relativistic228

approximation.229

We choose to calculate the right-hand side of (4.3) in the neutron star frame. The central
challenge, then, is to write the di↵erential cross section in this frame. Fortunately, this is a
standard result. The cross section in the center of mass frame, d�CM, is related to the cross section
in any frame, d�, by the Möller velocity, vMøl in that frame:

d� vrel = d�CM vMøl vMøl =

q
(p · k)2 �m2

Tm
2
�

EpEk
. (4.4)

This result is well known from the calculation of dark matter annihilation [47]; we refer to Ap-
pendix B.4 for a discussion based on a recent review [48]. Thus we write df in the neutron star
frame with respect to the center-of-mass cross section d�CM,

df = d�CM vMøl dnT �t |capture . (4.5)

To integrate df , one requires explicit factors enforcing the energy transfer conditions for capture.230

4.4 Energy Transfer Conditions231

The explicit factors in (4.5) determine the probability of scattering. The contribution of these
factors are subject to the condition that the scattering dark matter is captured by the neutron
star. The di↵erential capture e�ciency, df , should only be non-zero if the energy transferred �E
from the dark matter to the target (i) overcomes the Fermi degeneracy (Pauli blocking) of outgoing
target states and (ii) depletes the dark matter’s asymptotic kinetic energy so that it cannot escape
the star’s gravitational potential. These conditions are applied as step functions in the capture
e�ciency:

⇥(x) =

(
1 if x > 0

0 otherwise
. (4.6)

4.4.1 Degenerate Targets232

Because of the Fermi degeneracy of the neutron star, the outgoing target particle must have
momentum greater than the Fermi momentum, pF, or else the Pauli exclusion principle blocks the
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interaction. This restricts the phase space to have a minimum energy transfer from the dark matter
to the target, �E, in the neutron star frame where the Fermi surface is spherically symmetric:

�E + Ep � EF > 0 df ⇠ ⇥ (�E + Ep � EF) , (4.7)

where Ep is the energy of the initial state target particle and EF is the Fermi momentum for the233

target species. This is straightforwardly applied as a step function in df . Figure 2 demonstrates234

why this treatment is necessary compared to the non-relativistic limit.235

4.4.2 Depleting the Kinetic Energy: Single Scatter Case236

The second capture condition is that the dark matter must transfer enough of its kinetic energy
in the scattering event. This is a matter of whether the outgoing dark matter particle has less
than the neutron star escape velocity at the point of scattering. This amounts to losing the kinetic
energy it had asymptotically far from the star:

�E ��Emin > 0 �Emin = Ehalo =
1

2
m�v

2
halo . (4.8)

For this manuscript we assume that dark matter–target scattering is elastic. Restricting to the
case where dark matter scatters only once in the neutron star, this tells us that the single-scatter
capture e�ciency is

df1 =d�CM vMøl dnT �t ⇥ (�E + Ep � EF) ⇥ (�E ��Emin) . (4.9)

4.4.3 Multiple Scattering237

The energy transfer condition (4.8) is modified when the transiting dark matter particle can scatters
more than once in the target volume of the neutron star. In that case it is su�cient for dark matter
to lose its asymptotic kinetic energy �Emin = Ehalo over multiple interactions over the course of
its entire transit through the star. The generalization of the condition (4.8) for Nhit scatters is

h�Ei �
�Emin

Nhit
> 0 , (4.10)

where h�Ei is the average energy transfer over all of the dark matter scatters. For a dark matter
particle that requires Nhit scatters to capture, each scatter must occur in a fraction of the total
transit time,

�tNhit
=

�t

Nhit
. (4.11)

We derive an estimate for total transit time, �t, in Appendix B.3. We assume that the dark matter238

takes a straight line path through the star with no significant deflection. This is a conservative239

estimate in that additional deflection in the star can increase the total transit time.240

A full treatment of the capture including multiple scatters accounts is computationally de-
manding. In order to impose (4.10) one must keep track of the transiting dark matter particle’s
scattering history. Further, one must take an appropriately weighted sum over possible number
of scatters Nhit; see Appendix C. To make the problem tractable, we make a conservative simpli-
fication and replace (4.10) with the stronger condition that each scatter must have at least the
minimum average energy to capture:

�E �
�Emin

Nhit
> 0 . (4.12)
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m for t
he
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targe
t spe

cies.
This

is str
aight

forw
ardly

appl
ied as a

step
func

tion
in df . Figu

re 2 demonstr
ates

234

why
this

treat
ment i

s nec
essar

y compare
d to the n

on-re
lativ

istic
limit.
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4.4.2
Deple

ting
the

Kinet
ic Ene

rgy:
Sing

le Scat
ter Case

236

The
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ure cond

ition
is th

at th
e dark

matter
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er en
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of its

kinet
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y

in the scatt
ering

even
t. This

is a matter
of w

heth
er th

e outg
oing

dark
matter

parti
cle has

less

than
the n

eutro
n star

escap
e vel

ocity
at th

e poi
nt of

scatt
ering

. Th
is am

ount
s to l

osing
the k

ineti
c

energ
y it ha

d asym
ptoti

cally
far fr

om the s
tar:

�E ��Emin
> 0

�Emin
= Ehalo

=
1
2
m�v

2
halo

.

(4.8)

For
this

manus
cript

we assum
e that

dark
matter

–targ
et sc

atter
ing is ela

stic.
Rest

rictin
g to the

case
wher

e dar
k matter

scatt
ers o

nly once
in the n

eutro
n star,

this
tells

us th
at th

e sin
gle-s

catte
r

capt
ure e

�cienc
y is

df1 =
d�CM

vMøl
dnT

�t ⇥ (�E + Ep �
EF) ⇥

(�E ��Emin)
.

(4.9)

4.4.3
Multip

le Scat
terin

g
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The
energ

y tra
nsfer

cond
ition

(4.8)
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ed w
hen t

he tr
ansit

ing d
ark m

atter
parti

cle ca
n sca

tters

more t
han

once
in the t

arget
volum

e of t
he ne

utron
star.

In that
case

it is
su�cient

for d
ark m

atter

to lose
its a

symptoti
c kinet

ic energ
y �Emin

= Ehalo
over

multip
le inter

actio
ns ov

er th
e cour

se of

its en
tire t

ransi
t thr

ough
the s

tar.
The

gene
raliz

ation
of th

e con
ditio

n (4.8)
for Nhit

scatt
ers is

h�Ei �
�Emin

Nhit

> 0 ,

(4.10
)

wher
e h�

Ei is
the a

verag
e ene

rgy trans
fer o

ver a
ll of

the d
ark matter

scatt
ers.

For a
dark

matter

parti
cle that

requ
ires

Nhit
scatt

ers t
o capt

ure,
each

scatt
er m

ust o
ccur

in a fract
ion of th

e total

trans
it tim

e,

�tNhit
=

�t

Nhit

.

(4.11
)

We der
ive a

n estim
ate f

or to
tal tr

ansit
time, �t, in

App
endix

B.3.
We ass

ume tha
t the

dark
matter

238

takes
a strai

ght l
ine path

throu
gh the star

with
no signi

fican
t defl

ectio
n. This

is a
cons

ervat
ive

239

estim
ate i

n that
addi

tiona
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ectio
n in the s

tar c
an incre

ase t
he to

tal t
ransi

t tim
e.

240 A full
treat

ment of th
e capt

ure inclu
ding

multip
le scatt

ers acco
unts

is computa
tiona

lly de-

mandi
ng.

In orde
r to

impose
(4.10

) one
must k

eep track
of th

e trans
iting

dark
matter

parti
cle’s

scatt
ering

histo
ry. Furt

her,
one

must t
ake an appr

opria
tely

weig
hted

sum
over

poss
ible

num
ber

of sc
atter

s Nhit
; see

App
endix

C. T
o make t

he p
roble

m tract
able,

we m
ake a

cons
ervat

ive s
impli-

ficat
ion and

repla
ce (4.10

) wit
h the stron

ger c
ondi

tion
that

each
scatt

er m
ust h

ave at le
ast t

he

minim
um avera

ge en
ergy

to capt
ure:

�E �

�Emin

Nhit

> 0 .

(4.12
)
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Understanding behavior of relativistic results
What it all boils down to

33

For each operator in each regime, check scaling 
with dark matter mass.

The phase space factors neglect the target initial angle ✓ and the azimuthal scattering angle296

↵; these play a role in understanding the total phase space scaling with m�, but their phase space297

volumes do not themselves scale with m�. The Pauli blocking step functions in (4.17) are converted298

into limits for the phase space integrations. We present a careful analysis of the phase space factors299

in Appendix F; in the main text we simply present the key results.300

The expression for the cross section depends on the details of the interaction between dark301

matter and the target. In the present study, we use the scaling behavior in (5.1) which describes302

most of the contact operators. [Flip: Say something about pointing out the exceptional cases somewhere, say303

something about how that a↵ects the plots.]304

In this analysis and in the phase space analysis in Appendix F we make the simplifying as-305

sumption that all of the factors are independent of one another. Thus we treat each phase space306

integral as having a trivial integrand so that they are purely unweighted volume integrals. It is307

clear that |M|
2 depends on both  and p, but our analysis is su�cient to understanding the scaling308

of the capture e�ciency with m�. In summary, for each regime the scaling of the capture e�ciency309

f with the dark matter mass m� is determined by following three questions corresponding to the310

factors in (5.4):311

1. How does the di↵erential cross section scale with m�?312

2. Is the phase space suppressed with m�?313

3. Does capture require multiple scatters?314

Heavy Dark Matter Regimes315

The heavy dark matter regimes are characterized by large momentum transfer so that Pauli block-316

ing is negligible.317

Heavy, but not very heavy, dark matter. In this limit, the cross section is independent of318

m�, the phase space is unsuppressed, and dark matter captures after a single scatter. Thus, f is319

independent of m�.320

Heavy dark matter is capable of transferring su�cient energy to capture in a neutron star. This321

is true even for relativistic targets: heavy dark matter may transfer enough energy to overwhelm322

the Pauli degeneracy that blocks scattering with low-energy transfer. The full expression for the323

energy transferred from the dark matter to the target, �E, is presented in Appendix E. Because the324

gravitational acceleration from the neutron star is proportional to the dark matter mass, heavier325

dark matter has a larger three momentum upon scattering, k. With the heavy dark matter scaling326

s ⇠ m2
� in (5.3), the cross section d�/d⌦ in (5.2) is independent of m�. Thus in this regime327

the capture e�ciency is independent of the dark matter mass, as shown by the plateau feature in328

Figure 4.329

Observe that the (EF/mT)2 term in the fully relativistic cross section (5.2) is not present in330

the non-relativistic limit. While this is negligible for non-relativistic targets, this factor is on the331

order of 105 for ultrarelativistic targets like electrons. Thus this is a gross underestimation when332

using the non-relativistic formulation for relativistic targets.333

Very heavy dark matter. This behaves like heavy dark matter, except multiple scatters are334

required to capture. We find that f scales like m�1
� .335

The heavy dark matter behavior above is breaks down for dark matter masses in the very heavy
regime. In this case the energy transfer �E as a function of dark matter mass saturates. However,

15

Figure 5: Logical Flow Chart. This explains the behavior in the three regions of Figure 4. [Flip: fill in

caption; explain that di↵erent operators can behave di↵erently; but this is the general behavior.]

5.2 Cross Section Scaling290

Most of the contact operators that we consider produce cross sections of the form
✓
d�

d⌦

◆

CM

/
|M|

2

s
⇡

m2
�E

2
p

s⇤4
⇡

m2
�m

2
T

s⇤4

✓
1 +

E2
F

m2
T

◆
. (5.1)

Appendix H motivates this behavior and classifies the exceptional cases that scale di↵erently. In
the non-relativistic target limit, p2F/m

2
T ⌧ 1 and s = (m�+mT)2, the above expression reduces to

a standard expression familiar from dark matter direct detection:
✓
d�

d⌦

◆

CM

/
m2
�m

2
T

(m� +mT)2⇤4
. (5.2)

The squared center of mass energy, s = E2
CM, depends on the ratios of the dimensionful quantities

in this expression:

s = m2
� +m2

T + 2�escm�Ep

✓
1�

pvesc
Ep

cos ✓

◆
s ⇡

8
><

>:

m2
T m� ⌧ m2

T/pF
m�Ep m2

T/EF ⌧ m� ⌧ pF
m2
� pF ⌧ m�

. (5.3)

5.3 Characteristic Features291

Figure 5 depicts the scaling of the capture e�ciency f with the dark matter mass m� and the
origin of the scaling in each regime. It describes the behavior in the heuristic reach plot according
to the phase space regions in Figure 4. To understand this behavior, we identify which factors in
the capture e�ciency, (4.17), scale with m�:

f ⇠
1

Nhit

Z 1

cos max

d cos 

Z pF

pmin

p2dp

p3F

|M|
2

s
. (5.4)

The scaling factors are a (i) factor accounting formultiple scattering, N�1
hit , (ii) phase space integrals292

d cos p2dp, and (iii) the di↵erential cross section d�/d⌦CM.293

The Møller velocity vMøl, (4.4), reduces to vesc in the non-relativistic target limit or 1�vesc cos ✓294

in the relativistic target limit. In either case it does not contribute to the m� scaling of f .295

14

capture 
efficiency
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Into the weeds…

34

Figure 5: Logical Flow Chart. This explains the behavior in the three regions of Figure 4. [Flip: fill in

caption; explain that di↵erent operators can behave di↵erently; but this is the general behavior.]
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… some cases are more complex

35

But you we wrote up heuristic flow charts

2004.09539

In the this operator there is no plateau.


The electrons are relativistic and have an 
additional regime where dark matter is “light-
ish” compared to the Fermi momentum.


Verified in Monte Carlo calculation (left)
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Thanks!

36

Opportunities for direct detection with neutron stars 
New formalism for relativistic, degenerate targets

Killer app: 
leptophilic DM

arXiv:1911.13293 & arXiv: 2004.09539
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… someone asked a clever question
Additional slides

37
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Möller velocity review

38see, e.g. Cannoni 1605.00569 for a review

B.4 Flux Density and the Møller Velocity507

The Møller velocity, vMøl, appears in the kinematics of non-collinear particle scattering such as dark
matter annihilation [47]. For colliding particles T and � with respective four-momenta pµ = (Ep,p)
and kµ = (Ek,k), a convenient expression is

vMøl =

q
(p · k)2 �m2

Tm
2
�

EpEk
, (B.14)

which is precisely the factor that shows up in the flux density of dark matter–target scattering508

rate: nTn�vMøl. The following discussion is a summary of the review by Cannoni [48], which in509

turn is based on The Classical Theory of Fields by Landau & Lifschitz [59].510

The relative velocity vrel between the target and dark matter is a Lorentz invariant [60]. This
can be seen, for example, by starting in the target frame where vrel is simply the dark matter
velocity. One may subsequently write vrel in terms of Lorentz invariants:

vrel =
k

Ek

����
T

=

q
E2

k �m2
�

Ek

������
T

=

q
(p · k)2 �m2

Tm
2
�

p · k
. (B.15)

For a given scattering process, the invariant rate density is

R =
d⌫

�V�t
= (d� vrel dnT dn�)T , (B.16)

where the right-hand side we write the expression in the frame of the target particle because here511

the cross section d� and relative velocity vrel = v�|T are unambiguously defined. By comparison,512

we do not simply plug in our expression for d⌫ from (4.2) because of the challenge of defining d�513

in an arbitrary frame due to Lorentz contraction.514

In order to write the rate density in a general frame, F , we note that it must be proportional
to the target and dark matter densities,

R = (AdnTdn�)F =

✓
A
ETE�

mTm�

◆

F

dn̂Tdn̂� , (B.17)

where A is a proportionality factor and we factor out the target density in the target frame515

dn̂T = (dnT)T and the dark matter density in the dark matter frame dn̂� = (dn�)�. These516

densities are the zeroth components of four-currents so that boosting from their respective rest517

frames to a general frame rescales them by � = E/m.518

Because R and dn̂Tdn̂�/mTm� are invariant, the combination AETE� must also be invariant.
Comparing the right-hand sides of (B.16) and (B.17) gives the proportionality factor,

A =
p · k

ETE�
(d� vrel)T , (B.18)

where the cross section d� is calculated in the target frame3. Using the invariance of vrel in (B.15)
and the invariance of d�T along the collision axis, we have d�T = d�CM so that the invariant rate

3Here one could equivalently replaced the target frame with the dark matter frame. Indeed, this is necessary if the
target is formally massless. The cross section is invariant with respect to boosts along the collision axis so that
d�T = d��
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we do not simply plug in our expression for d⌫ from (4.2) because of the challenge of defining d�513

in an arbitrary frame due to Lorentz contraction.514

In order to write the rate density in a general frame, F , we note that it must be proportional
to the target and dark matter densities,

R = (AdnTdn�)F =
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where A is a proportionality factor and we factor out the target density in the target frame515

dn̂T = (dnT)T and the dark matter density in the dark matter frame dn̂� = (dn�)�. These516

densities are the zeroth components of four-currents so that boosting from their respective rest517

frames to a general frame rescales them by � = E/m.518

Because R and dn̂Tdn̂�/mTm� are invariant, the combination AETE� must also be invariant.
Comparing the right-hand sides of (B.16) and (B.17) gives the proportionality factor,

A =
p · k

ETE�
(d� vrel)T , (B.18)

where the cross section d� is calculated in the target frame3. Using the invariance of vrel in (B.15)
and the invariance of d�T along the collision axis, we have d�T = d�CM so that the invariant rate

3Here one could equivalently replaced the target frame with the dark matter frame. Indeed, this is necessary if the
target is formally massless. The cross section is invariant with respect to boosts along the collision axis so that
d�T = d��
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density is conveniently expressed as

R = d�CM
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dnTdn� = d�CM vMøl dnTdn� . (B.19)

Comparing this to the rate in (B.16), we have a convenient transformation of d� vrel into any frame:

(d� vrel)F = d�CM (vMøl)F . (B.20)

The relative velocity vrel is invariant [48], but the Møller velocity, vMøl, is not. The above relation519

is a simple way to connect the cross section in a general frame to the center-of-mass frame where520

it is most conveniently calculated. This proves (4.4).521

C Capture from Multiple Scattering522

We discuss the treatment of multiple scattering, expanding on the presentation in Section 4.4.3.
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�E is fixed for a given initial and final state kinematic configuration. The ⇥ function enforces526

that only scatters that satisfy the capture condition are counted when integrating (C.2). When527
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Otherwise, the capture probability for a given dark matter particle is simply the capture e�ciency529
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This is clearly a conservative estimate as it undercounts configurations where the average energy531

loss is larger than �Emin/2 but one scatter has �E < �Emin/2.532

When combining these results, one must be careful not to double count the configurations. If
�E permits capture after one scatter, it should not be counted in the piece for two scatters. Thus
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From a boost of the “fixed-target” lab frame
Möller velocity: in a nutshell
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B.2 Energy Transfer for a Non-Relativistic Target504

To assist in contrasting the relativistic and non-relativistic cases, we derive the energy transfer to
a non-relativistic target that is stationary in the neutron star frame, equation (5) in Ref. [1]. In
the neutron star frame, the incident dark matter has four-momentum kµ = (Ek,k) such that

k2 = E2
k �m2

� = (�esc � 1)m2
� =

v2esc
1� v2esc

m2
� �2esc =

1

1� v2esc
, (B.5)

where vesc is the escape velocity at the surface of the neutron star. Similarly, let pµ = (mT,0) be
the non-relativistic target four-momentum in the neutron star frame. Define � and �2 = (1� �2)
to be the boost parameter to the center of mass frame. The center of mass frame momenta are

kµ
CM =

0
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The total three-momentum vanishes in the center of mass frame so that

pCM + kCM = 0 which gives � =
k

Eesc +mT
. (B.7)

The transferred four-momentum is qµCM = kµ
CM � k0µ

CM = (0,qCM)T . In the neutron star frame, the
energy transfer is

�E = q0 = �� · qCM =
�k · qCM

Ek +mT
=
�2mTk2 (1� cos )

(Ek +mT)2
, (B.8)

where  is the angle between the dark matter incoming and outgoing three-momenta in the center
of mass frame. We simplify this using

�2

Eesc +mT
=

Eesc +mT

m2
� +m2

T + 2�escm�mT
. (B.9)

The energy transfer to a non-relativistic target in the neutron star frame is

�E =
mTm2

�

m2
� +m2

T + 2�escm�mT

v2esc
1� v2esc

(1� cos ) , (B.10)

where vesc is the escape velocity so that in the v2esc ⌧ 1 limit the second factor reduces to v2esc.505

B.3 Estimate of the transit time506

To estimate the transit time of a radially in-falling dark matter particle through a neutron star,
we model the star as uniform density sphere so that its gravitational potential is

V (r) =
3GM?

2R?

✓
1�

r2

3R2
?

◆
. (B.11)

The dark matter velocity inside the star, v(r/R?) is approximated to be

v(x) =

p
V (x) (V (x) + 2)

V (x) + 1
x = r/R? . (B.12)

The transit time in natural units is thus

�t = 2R?

Z 1

0

dx

v(x)
⇡ 3.2 R? . (B.13)
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energy transfer is

�E = q0 = �� · qCM =
�k · qCM

Ek +mT
=
�2mTk2 (1� cos )

(Ek +mT)2
, (B.8)

where  is the angle between the dark matter incoming and outgoing three-momenta in the center
of mass frame. We simplify this using

�2

Eesc +mT
=

Eesc +mT

m2
� +m2

T + 2�escm�mT
. (B.9)

The energy transfer to a non-relativistic target in the neutron star frame is

�E =
mTm2

�

m2
� +m2

T + 2�escm�mT

v2esc
1� v2esc

(1� cos ) , (B.10)

where vesc is the escape velocity so that in the v2esc ⌧ 1 limit the second factor reduces to v2esc.505

B.3 Estimate of the transit time506

To estimate the transit time of a radially in-falling dark matter particle through a neutron star,
we model the star as uniform density sphere so that its gravitational potential is

V (r) =
3GM?

2R?

✓
1�

r2

3R2
?

◆
. (B.11)

The dark matter velocity inside the star, v(r/R?) is approximated to be

v(x) =

p
V (x) (V (x) + 2)

V (x) + 1
x = r/R? . (B.12)

The transit time in natural units is thus

�t = 2R?

Z 1

0

dx

v(x)
⇡ 3.2 R? . (B.13)
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E Energy Transfer in the Neutron Star Frame540

We derive �E, the energy transferred to the target by a dark matter scatter in the neutron star
frame. It is convenient to relate this to quantities in the center of mass frame:

�E = Ek � Ek0 = � [(Ek)CM + (Ek)CM] + �� · (kCM � k0
CM) = �� · qCM . (E.1)

Here qCM = kCM � k0
CM is the transferred three-momentum in the center of mass frame. Note that541

this is the inverse transformation of (D.1), for which the boost parameter is �� rather than �.542

We may write the scattered dark matter three-momentum, k0
CM, with respect to the polar and

azimuthal angles in the center of mass frame. The polar angle  is measured with respect to the
kCM direction. The azimuthal angle ↵ is further measured with respect to the component of �
that is perpendicular to kCM, which we call �?. In the center of mass frame the length of the
three-momentum is conserved, so that

k0
CM = kCM sin cos↵ �̂? + sin sin↵

⇣
kCM ⇥ �̂?

⌘
+ cos kCM , (E.2)

where �̂? is a unit vector in the direction of �?. Plugging (E.2) into (E.1) and using the orthog-
onality of � and (kCM ⇥ �̂?), we have:

�E = �� ·

h
kCM (1� cos )� kCM sin cos↵ �̂?

i
(E.3)

= �(� · kCM) (1� cos )� �
q
�2 k2

CM � (� · kCM)
2 sin cos↵ . (E.4)

In Appendix F we reduce this expression to special cases that illuminate the qualitative features543

of relativistic capture.544

F Scaling of Phase Space Volume545

This appendix shows how kinematic conditions on �E conditions impose constraints on the phase546

space variables cos ✓, cos , ↵, and p. We can use the energy transfer expression (E.4) to develop547

a qualitative understanding of the capture rate as a function of dark matter mass. We establish a548

set of necessary conditions to diagnose the size of the phase space accessible to capture.549

F.1 Relevant Expressions for this Appendix550

The center of mass momentum, from (D.1) and (D.13), is

ECMkCM = (Epk� Ekp) +
E� ⇥ (p⇥ k)

E + ECM

, (F.1)

where the second term is orthogonal to the boost from the neutron star to center of mass frame,
�. We define the angle cos � between � and kCM:

� · kCM ⌘ �kCM cos � =
Epk2

� Ekp2 + (Ep � Ek)p · k

EECM

. (F.2)

With respect to this variable, the energy transfer expression (E.4) is

�E

��kCM

= cos � (1� cos )� |sin �| cos↵ sin , (F.3)
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of �E and so shares the same extrema. The expression is:

�E = cos �(1� cos )� | sin �| cos↵ sin . (G.1)

Because | sin �| sin � 0, the term in �E that depends on ↵ is maximized when cos↵ is as negative
as possible. Thus it is clear that the maximum of �E occurs for cos↵ = �1. Using @�E/@ = 0,
the critical point for �E with respect to  is

tan =
| sin �|

cos �
cos↵ = �

| sin �|

cos �
. (G.2)

It is clear that this is a maximum because �E is written as a linear combination of eigenfunctions654

of @2/@ 2 with non-positive eigenvalues (constants and trigonometric functions). Thus we are655

guaranteed to have @2�E/@ 2
 0.656

We may succinctly write the conditions for the maximum energy transfer as

cos↵ = �1 cos = � cos � sin = | sin �| =
p
1� cos2 � , (G.3)

where we have used the range 0    ⇡ to assign the negative sign to cos . With this result,
the maximum energy transfer, �Emax, is

�Emax

��kCM

= cos �(1 + cos �) + sin2 � = cos � + 1 . (G.4)

The expression for cos � is presented in (F.20). We present approximations for this expression for657

the limiting cases of interest. [Flip: I didn’t check any of these. I assume they’re correct.]658

G.1 Non-relativistic targets, heavy dark matter659

We assume mT � p and m� � mT. In this limit, (G.4) gives

�Emax ⇡
4�2esc (mTvesc � p cos ✓)2 + p2 sin2 ✓

2
⇣
mT �

p
vesc

cos ✓
⌘ . (G.5)

As a check, in the non-relativistic limit, p ! 0 and Ep ! mT, this expression reduces to the well660

known result (B.10), maximized over  , �Emax ! 2mT�2escv
2
esc.661

G.2 Non-relativistic targets, light dark matter662

We assume mT � p and m� ⌧ mT. In this limit, (G.4) gives

�Emax ⇡
p�escm�

mT


(mTvesc � p)(1 + cos ✓) +

p2 sin2 ✓

2�2esc(mTvesc � p cos ✓)

�
. (G.6)

Maximizing over the target orientation ✓ gives

�Emax ⇡
2p�escvescm�

mT

✓
1�

p

mTvesc

◆
. (G.7)

We thus have �Emax / m�.663
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�
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We show below that expression on the right-hand side is either determined by a term that is either614

linear or independent of m�. NR: It’s odd that we discuss our result by referencing an equation615

that will appear a few lines later. This defines two sub-regimes:616

• Very light dark matter: When m� . m2
T/pF, the O(m0

�) term sets the bound in (F.26).617

In this case the suppression of phase space is independent of m�.618

• Light dark matter: When m2
T/pF . m� . pF , the O(m1

�) term sets the bound in (F.26).619

In this case the volume of the cos phase space scales with m�.620

This is the main result of the analysis. The remainder of this section proves the above assertion.621

Proof. We evaluate the right-hand side of (F.19). As an intermediate step, write cos � in terms
of a ratio using (F.2):

cos � =
Epk2

� Ekp2 + (Ep � Ek)p · k

E�ECMkCM

⌘
B

A
. (F.20)

Then the right-hand side of (F.19) is

1� cos2 �

cos2 �
=

A2
� B2

B2
. (F.21)

A2 is written using the expression for E2
CMk

2
CM from (D.15) and E2�2 = (p+ k)2 from (D.1). The

numerator of (F.21) greatly simplifies to

A2
� B2 = k2p2E2

CM sin2 ✓ , (F.22)

where E2
CM is simply the Mandelstam s parameter, (D.3). The full expression for the upper bound

in (F.21) is

tan2  

2
<

kp sin2 ✓
�
m2

T +m2
� + 2EpEk � 2pk cos ✓

�

[Epk2 � Ekp2 + (Ep � Ek)pk cos ✓]
2 cos2 ↵ . (F.23)

Assuming that the characteristic target momentum is the Fermi momentum, p ⇠ pF, the
denominator can be expanded with respect to the m� ⌧ pF regime:

B = ��escm�

⇥�
p2 � Eppvesc cos ✓

�
� �escvescm� (Epvesc � p cos ✓)

⇤
(F.24)

= ��escm�p
2

✓
1�

Epvesc
p

cos ✓

◆
�

m�

p
X

�
, (F.25)

where the X term is higher order in m�/p. Plugging in the quantities (F.6), using Ep ⇡ p, and
expanding to O(m�/p) produces

tan2  

2
<

v2esc sin
2 ✓ cos2 ↵

(1� vesc cos ✓)
2


m2

T

p2
+

m�

p

✓
2
m2

T

p2
X + 2�esc(1� vesc cos ✓)

◆
+O

✓
m2

�

p2

◆�
. (F.26)

The key here is that the upper bound on tan2  /2 scales either independently of m� or linearly622

with m� depending on which term in the square brackets dominates.623

33

One may then evaluate this in various limits.
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where we identify
p
1� cos2 � = |sin �|. [Flip: Can we relate cos � to the angle in ****? That would be a551

good physical intuition: it this describes the extent to which the electron momentum is in the same direction as the dark552

matter momentum, so that there is smaller energy transfer.]553

F.2 Rules of Thumb for Phase Space Scaling554

We establish a set of heuristics to diagnose the volume of phase space.555

Rule of Thumb 1 (Independent Integration Assumption). We assume that the phase space in-556

tegrals are independent of one another. For simplicity, we ignore the dependence on phase space557

integrals in the di↵erential cross section, d�/d⌦CM. This is su�cient to understand the scaling558

behavior with respect to the dark matter mass.559

Rule of Thumb 2 (Weak Condition). First �E > 0. This is a su�cient, but not necessary560

condition.561

Corollary of Thumb 1 (Weaker condition). cos � > 0 is a su�cient condition that �E > 0 for562

a unsuppressed part of phase space. This is a su�cient, but not necessary condition.563

Proof. This comes from positivity of the right-hand side and the range 0    ⇡, since  is a564

polar angle.565

Rule of Thumb 3 (Strong Condition). The phase space for the initial target momentum must
be large enough that the outgoing target after scattering has momentum larger than the Fermi
momentum. For this diagnostic, we check relative to the maximum kinematically allowed energy
transfer, �Emax:

p+�Emax > pF . (F.4)

566

We follow the sequence in Fig. 6. Our primary diagnostic is the Weak Condition, Rule 2. We567

separate cases according to whether or not they pass the Weaker Condition, Corollary 1 since this568

is a simple diagnostic. When the Weaker Condition fails, one must proceed to apply the Weak569

Condition in the cos � < 0 limit. We derive heuristic bounds on the phase space volume by checking570

compatibility of the Weak Condition �E > 0 with cos � < 0.571

F.3 cos � and the Weaker Condition572

Factoring out overall positive factors in (F.2), we find that the condition for cos � > 0 is

Ep(k
2 + p · k) > Ek(p

2 + p · k) . (F.5)

We square both sides and use the kinematic relations (the energy and momentum of dark matter
at the point of impact):

E2
p = m2

T + p2 E2
k = �2escm

2
� k2 = �2escv

2
escm

2
� (F.6)

to distill Corollary 1 to the following: phase space is unsuppressed when
�
m2

T + p2
� �
�2escv

2
escm

2
� + p�escvescm� cos ✓

�2
> �2escm

2
�

�
p2 + p�escvescm� cos ✓

�
. (F.7)

29
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Figure 7: The Weaker Condition (F.7) applied to the cases in Fig. 4. Shaded regions are allowed by the
condition, and thick black lines contained in these regions indicate the allowed range of cos ✓ 2 [�1, 1]
consistent with the Weaker Condition. The case of a relativistic target with light dark matter (lower left)
is not compatible seen to be incompatible with the Weaker Condition.

For light dark matter with non-relativistic targets, the m�/p term is negligible compared to p/mT.587

This means that the Weaker Condition (Corollary 1) implies that the entire range �1  cos ✓  1588

admits scattering with �E > 0. By our Rule 1, there is no suppression in the cos ✓ volume that589

admits capture.590

F.4.3 Relativistic target, heavy dark matter591

In this regime, mT < pF and m� � mT. The Weaker Condition, (F.7), reduces to

�
�
�3
escvescp

2m2
�

�
cos2 ✓ �

�
2p3m�

�
cos ✓ � �3

escv
3
escp

2m2
� > 0 . (F.12)

Solving for the critical points of the inequality in this limit gives

�vesc . cos ✓ . vesc , (F.13)

where we have used p ⇡ pF. Because vesc < 1, the �E > 0 condition shrinks the allowed range of592

cos ✓. However, the neutron star’s gravitational acceleration is so large that this is only a modest593

suppression of the cos ✓ volume by v�1
esc ⇠ 1.7. For the purposes of understanding the mass scaling594

of the capture phase space, this suppression is negligible.595

F.4.4 Relativistic target, light dark matter596

In this regime, mT < pF and m� ⌧ mT. The Weaker Condition, (F.7), reduces to
�
�escv

4
escp

4
�
cos2 ✓ �

�
2vescp

3m�

�
cos ✓ � �escp

4 > 0 . (F.14)
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Figure 3: Variables and angles

One may then sum over the number of hits required to scatter:

df =
X

Nhit

d�CM vMøl dnT
�t

Nhit
⇥

✓
�E �

�Emin

Nhit

◆
⇥

✓
�Emin

Nhit + 1
��E

◆
⇥ (�E + Ep � EF) . (4.13)

A phase space region that captures after N hits is only counted in the term of the sum where241

Nhit = N ; this is imposed by the first two step functions.242

4.5 Capture Probability Formula243

The full expression for the di↵erential capture rate combines the base expression for df (4.3) that
enforces Pauli blocking (4.7) and the sum and over multiple scatters (4.13):

df =
X

Nhit

d�CM vMøl dnT
�t

Nhit
⇥

✓
�E �

Ehalo

Nhit

◆
⇥

✓
�Emin

Nhit + 1
��E

◆
⇥ (�E + Ep � EF) . (4.14)

It is convenient to explicitly write the center-of-mass cross section with respect to the kinematics
in that frame

d�CM =
d�CM

d⌦CM

d⌦CM d⌦CM = d↵ d(cos  ) . (4.15)

We write the di↵erential volume in the target’s momentum space as with respect to its Fermi
sphere,

dnT = hnTi
p2dp⌦F

VF
VF =

4

3
⇡p3F d⌦F = d' d(cos ✓) , (4.16)

where hnTi is the average target density in (2.2) and we write p = |p| to be the magnitude of the
target three-momentum. This is integrated up to pF, the Fermi three-momentum. The d' integral
is trivial. The final expression is

f =
X

Nhit

hnTi�t

Nhit

Z
d⌦F

Z pF

0

p2dp

VF

Z
d⌦CM

d�CM

d⌦CM

vMøl ⇥
3(�E) , (4.17)

where we use the shorthand notation ⇥3(�E) to indicate the step functions from Pauli blocking
and multiple scatters,

⇥3(�E) ⌘ ⇥

✓
�E �

Ehalo

Nhit

◆
⇥

✓
�Emin

Nhit + 1
��E

◆
⇥ (�E + Ep � EF) . (4.18)
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where we identify
p
1� cos2 � = |sin �|. [Flip: Can we relate cos � to the angle in ****? That would be a551

good physical intuition: it this describes the extent to which the electron momentum is in the same direction as the dark552

matter momentum, so that there is smaller energy transfer.]553

F.2 Rules of Thumb for Phase Space Scaling554

We establish a set of heuristics to diagnose the volume of phase space.555

Rule of Thumb 1 (Independent Integration Assumption). We assume that the phase space in-556

tegrals are independent of one another. For simplicity, we ignore the dependence on phase space557

integrals in the di↵erential cross section, d�/d⌦CM. This is su�cient to understand the scaling558

behavior with respect to the dark matter mass.559

Rule of Thumb 2 (Weak Condition). First �E > 0. This is a su�cient, but not necessary560

condition.561

Corollary of Thumb 1 (Weaker condition). cos � > 0 is a su�cient condition that �E > 0 for562

a unsuppressed part of phase space. This is a su�cient, but not necessary condition.563

Proof. This comes from positivity of the right-hand side and the range 0    ⇡, since  is a564

polar angle.565

Rule of Thumb 3 (Strong Condition). The phase space for the initial target momentum must
be large enough that the outgoing target after scattering has momentum larger than the Fermi
momentum. For this diagnostic, we check relative to the maximum kinematically allowed energy
transfer, �Emax:

p+�Emax > pF . (F.4)

566

We follow the sequence in Fig. 6. Our primary diagnostic is the Weak Condition, Rule 2. We567

separate cases according to whether or not they pass the Weaker Condition, Corollary 1 since this568

is a simple diagnostic. When the Weaker Condition fails, one must proceed to apply the Weak569

Condition in the cos � < 0 limit. We derive heuristic bounds on the phase space volume by checking570

compatibility of the Weak Condition �E > 0 with cos � < 0.571

F.3 cos � and the Weaker Condition572

Factoring out overall positive factors in (F.2), we find that the condition for cos � > 0 is

Ep(k
2 + p · k) > Ek(p

2 + p · k) . (F.5)

We square both sides and use the kinematic relations (the energy and momentum of dark matter
at the point of impact):

E2
p = m2

T + p2 E2
k = �2escm

2
� k2 = �2escv

2
escm

2
� (F.6)

to distill Corollary 1 to the following: phase space is unsuppressed when
�
m2

T + p2
� �
�2escv

2
escm

2
� + p�escvescm� cos ✓

�2
> �2escm

2
�

�
p2 + p�escvescm� cos ✓

�
. (F.7)
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We square both sides and use the kinematic relations (the energy and momentum of dark matter
at the point of impact):
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