Dark Matter Signals at keV & GeV

CETUP 2023

Kev Abazajian University of California, Irvine

June 21, 2023

Discovery of New Physics: Massive Neutrinos

Neutrino Mass Generation: An Original Hidden Sector Theory

- Simplest models of neutrino mass introduce sterile neutrinos that generate small active neutrino mass scales from very massive sterile neutrinos (Seesaw models)
- Phenomenological Insertion of Majorana & Dirac Mass Terms:

$$\mathcal{L} \supset -y_{\alpha i} L_{\alpha} N_i H - \frac{1}{2} M_{ij} N_i N_j + H.c.$$

(e.g. ν SM de Gouvêa 2005; ν MSM Asaka et al 2005; L_e - L_μ - L_τ Lindner+ 2010)

- Two massive (≥100 GeV) sterile neutrinos are required by atmospheric and solar neutrino mass scales. Only hidden sector model with evidence for its existence!
- 3rd sterile neutrino has complete freedom. In simplest formulations, since lowest mass light *v* is unbounded from below, so is the mixing of the lightest sterile neutrinos with the active *v*.

$$\theta \sim \sqrt{\frac{m_{\alpha}}{M}}$$

How much small scale structure is there?

Dwarf galaxies around the Milky Way are less dense than they should be if they held cold dark matter

Measuring Large Scale Structure P(k)

Perturbation Evolution

Abazajian astro-ph/0511630

Simulating the Universe's Structure

This is a description of the statistical distribution of the density fluctuations in the *linear regime*...

It is realized by giving a "push" to a grid of particles with that statistical distribution...

...and then gravity is allowed to do its duty.

Suppression of small scale power ⇒ Suppression of Small Halos 10⁵ 10⁴ 1000 $\overline{P(k)} \, \left[(h/\mathrm{Mpc})^3 ight]$ 100 10 Distance cut < 250 kpc 1000 High 1 CDM Central 0.1 Low vir,host 0.01 10⁻³ 0.01 100 100 0.1 10 $k \ [h/Mpc]$ $N (> V_{max})$ 10 ~8km/s 0.1 V vir,host max

Lyman- α Forest Constraints on WDM

Lyman-a forest: $m_{th} > 3 \text{ keV (WDM)}$ (95% CL) $m_{th} > 3 \text{ keV (WDM)}$ *m_{s.DW}* > 16 keV (Baur et al. 2015)

Milky Way galaxy counts: (Horiuchi+ 2013, Cherry & Horiuchi 2017, Nadler+ 2019)

 $\lambda_{FS} < 42 \; \mathrm{kpc}$ $M_{FS} < 3 imes 10^6 \; \mathrm{M}_{\odot}$ (Abazajian & Koushiappas 2006)

Lensing Constraints on WDM

Lensing substructure constraints push: $m_{th} > 5.3 \text{ keV} (m_{s,DW} > 41 \text{ keV})$ (Gilman+ 2019) combined with galaxy counts: $m_{th} > 9.7 \text{ keV}$ (Nadler+ 2021)

Simulation Resolution to Match Ly- α Observations

Simulation Resolution to Match Ly- α Observations

Varied Momenta Distributions for Different Production Mechanisms

Lensing Test of Sterile Neutrino DM Models

	Strong	Strong Lensing &	Lyman- α	Lyman- α &
	Lensing	Galaxy Counts		Thermo.
	$[\mathrm{keV}]$	$[\mathrm{keV}]$	$[\mathrm{keV}]$	$[\mathrm{keV}]$
PK	I: 10	I: 26	6.9	12
	II: 9.6	II: 24		
KTY	I: 2.1	I: 5.2	1.3	2.4
	II: 1.9	II: 4.8		
u MSM	7.0	16	I: 5.0	I: 9.0
			II: 5.0	II: 10
DW	I: 34	I: 92	21	40
	II: 31	II: 84		
thermal	4.6	9.8	3.3	5.3
		(Zelko	et al PRI	arXiv.2205.09

Strong Lensing Tests of WDM: Quadruply-Lensed Systems

JWST Cycle ONE Proposal 2022 (PI Nierenberg): *m*_{th} > 10 keV

Pushing beyond *m*_{th} > 10 keV: Accurate Calculations of Standard *Thermal* WDM

Given exact temperature via dilution, and training on 1 keV < m_{th} < 100 keV, we corrected the particle mass inferred from a given cutoff scale by 20% to 40% from previous WDM fits (e.g. Viel et al. 2005) Vogel & Abazajian 2210.10753

Sterile Neutrino Dark Matter: Shi-Fuller Mechanism Excluded

Abazajian+ arXiv:2203.07377

Sterile Neutrino kinematic searches in nuclear β-decay: KATRIN/TRISTAN, HUNTER, MAGNETO-v

HUNTER

Visible Sterile v in the Low-Reheat Universe: Cosmological Constraints & Laboratory Constraints

updated from Abazajian+ arXiv:2203.07377

Visible Sterile v in the Low-Reheat Universe: Cosmological Signals & Laboratory Constraints

keV → GeV

neutrinos -> WIMPs

Small Scale Structure: for WIMPS, all of this should be annihilating today...

Need a line-of-sight integral through the dark matter..

The Signal Projected in Galactic Coordinates

Zhong, Valli & Abazajian arXiv:2003.00148

Let's just go ahead and look...

Evidence for an extended source consistent with a dark matter interpretation:

Hooper & Goodenough, 2010 Hooper & Linden, 2011 Boyarsky et al. 2011

Abazajian & Kaplinghat 2012

Gordon & Macias (2013), Cirelli et al. (2013), Abazajian et al. (2014), Daylan et al (2014), Calore et al. (2014), Abazajian et al (2015), Ackermann et al (2015)

Looks so much like dark matter...

WIMP Dark Matter in the Galactic Center?! $TS_{true} = 2\Delta \ln \mathcal{L} = 824, \ 28.7\sigma, \ p = 4 \times 10^{-181}$ $m_{\chi} = 30 \text{ GeV}$ $0.69-0.95~{\rm GeV}$ $0.95 - 1.29 \,\, {\rm GeV}$ 1.29 - 1.76 GeV1.76 - 2.40 GeV**Extended Source Model** NFW $\gamma = 1.2$ 2 2 2 2 0 2 2 2 2

 $^{-2}$

10

 $^{-2}$

10 al Counts

2

0

 $^{-2}$

10

2

0

0

 $^{-2}$

10 Count

2

0

-2

2

GCE as MSPs: Spectral Comparison

GCE-MSP Spectral Equivalence: Abazajian 2010

Bright GCE, Dim Dwarfs: Strong Tension!

End of GCE and start of Stellar Bulge Gamma-rays?

GCE match with WISE IR X-map & even better with COBE/ DIRBE Boxy Bulge Map: Macias+ arXiv:1611.06644, Luminosity function consistency: Ploeg+ arXiv:1705.00806

How much better are stellar maps than DM? Bulge Maps are > 10σ Better Fit: Macias+ 1901.03822

Oscar Macias Visits Irvine: April 18, 2017

How much room can be left for dark matter? Not much! Abazajian, Horiuchi, Kaplinghat, <u>Keeley</u>, Macias 2003.10416

New Claims that DM is better than Stellar Distributions

- Di Mauro (2021)
 - claimed that dark-matter templates were preferred for all the diffuse emission models considered, but only 2 of 7 of those considered did that
 - of those, the Di Mauro (2021) did not use ring subdivision binning that is the standard (Fermi Collab. & beyond) for analyses of the GC (Pohl et al. 2022)
- Cholis et al (2022)
 - Cholis et al (2022) claimed better fits for DM than Bulge models for masked data from the GC, using their diffuse models
 - They claimed their diffuse models were better fits than Macias et al (2017), and was the reason for their DM preference, but did not explicitly test this claim
 - Didn't specify their bulge model source

New Claims that DM is better than Stellar Distributions

- McDermott et al (2022) [follow on to Cholis et al (2022)]
 - shared the models by github
 - used same ring-based diffuse models as Pohl et al (2022)
 - Our analysis found that:
 - McDermott+ had an artificial upper limit in their fits on some ring normalizations that was maximized so that the diffuse model did not fit properly
 - their bulge model (same as Cholis+) was not centered on GC
 - these both combined to lead to conclusion that DM fit better than the stellar nuclear bulge (NB) and extended bulge (BB)

Stellar-Associated Sources Remain Strongly Preferred Over Dark Matter

- Song et al (2023) [in prep.]
 - used data provided by McDermott+ to test previously mentioned problems
 - uses previous work's diffuse models to show that Pohl et al (2022) provide much better fits to GC diffuse emission than used in McDermott+ by a level of −2∆ ln *L* = 3510 (driven by upper-limit issue)
 - Bulge Models 3 different ones are preferred over DM by $-2\Delta \ln \mathcal{L} \approx 200$ to $-2\Delta \ln \mathcal{L} \approx 500$ using the Cholis+ diffuse models

Baseline model	Additional source	ΔTS	Significance
Base	BB	77.5	7.3 σ
Base	DM	80.7	7.5 σ
Base	NB	299.7	16.2 σ
Base+NB	DM	21.0	2.8σ
Base+NB	BB	90.9	8.1 σ
Base+NB+BB	DM	3.5	0.3σ

How much room can be left for dark matter? Not much! Abazajian, Horiuchi, Kaplinghat, <u>Keeley, Macias</u> 2003.10416

How much room can be left for dark matter? Not much!

Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416

How much room can be left for dark matter? Not much!

Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416

→We use the most conservative local density determinations, marginalize over them, as well as the most physical, conservative DM profiles

Limits are close to that expected from GC by Fermi-LAT Collaboration (Charles+ arXiv:1605.02016)

But what about Diffuse Model Uncertainties??

We took all diffuse models used in GCE analyses into account...

some much better fits than others... still report *most conservative* limit Abazajian, Horiuchi, Kaplinghat, <u>Keeley, Macias</u> 2003.10416

The *Most Stringent*, Robust Constraint on WIMP Annihilation from Fermi-LAT

Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416

Conclusions

- Warm Dark Matter has a 3σ preference over CDM in a recent high-resolution Ly-α WDM analysis (Villasenor et al. 2022)
- Sterile neutrino dark matter remains of interest: varied impact on structure formation for a given mass (Zelko et al. 2021)
- We have updated the thermal WDM transfer functions to improve accuracy by 20% to 40% (Vogel & Abazajian 2022)
- Sterile neutrino laboratory probes underway, with significant cosmological implications (Abazajian et al. in prep)
- The GCE in gamma rays is due to stellar remnants, likely MSPs (Song et al. in prep)
- Given this, the GC places the most stringent indirect detection limits on WIMP DM (Macias et al 2020)
- *But the GC in gamma rays remains very interesting* (e.g. 2 σ evidence for higgsino WIMP DM in GC data analyzed by Dessert+ 2023)