Here comes the Sun: Solar parameters in long-baseline accelerator neutrino oscillations

CERN TH Department

CETUP* workshop 2023

3. July 2023

Julia Gehrlein

 \rightarrow Strong evidence of physics beyond the SM

Discovery of neutrino flavor change by SuperKamiokande and SNO awarded Nobel Prize in 2015

Neutrino oscillations

Observation of neutrino oscillations:

Observation of neutrino oscillations:

- \rightarrow Strong evidence of physics beyond the SM
- \rightarrow introduced more parameters to the model (3 angles, at least one phase, 3 masses) \Rightarrow want to measure them

Julia Gehrlein

Neutrino oscillations

flavor eigenstates (of weak interaction) and mass eigenstates (of free particle Hamiltonian) not aligned for neutrinos

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} U_{e1} \\ U_{\mu1} \\ U_{\mu1} \\ U_{\tau1} \end{pmatrix}$$

 U_{PMNS} : relates flavor and mass states

Parametrized by four parameters (3 angles and at least one phase) $U_{\text{PMNS}} = U_{23}(\theta_{23})U_{13}(\theta_{13}, \delta)U_{12}(\theta_{12})\text{diag}(e^{i\alpha_1/2}, e^{i\alpha_2/2}, 1)$

Majorana phases: only physical for Majorana neutrinos, oscillation experiments not sensitive to them \rightarrow not going to talk about them further

Julia Gehrlein

Neutrino oscillations

$$\begin{array}{ccc} U_{e2} & U_{e3} \\ U_{\mu 2} & U_{\mu 3} \\ U_{\tau 2} & U_{\mu 3} \end{array} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

produce neutrino of flavor α with energy E, probability to detect neutrino with flavor β at distance L is $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2(\Delta m_{ii}^2 L/4E), \ \Delta m_{ii}^2 = m_i^2 - m_i^2$

In a 2-flavor approximation

Julia Gehrlein

Neutrino oscillations

mass ordering unknown

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

- Global fits to oscillation data: Information on mixing angles, mass splittings
- mass splittings: $|\Delta m_{32}^2| = 2.5 \cdot 10^{-3} \text{ eV}^2$, $\Delta m_{21}^2 = 7.4 \cdot 10^{-5} \text{ eV}^2$

[nufit v5.1]

Measurement of angles from several experiments all three angles non-zero mixing angles are large!

Global fits to oscillation data: Information on mixing angles, mass splittings

[nufit v5.1]

mixing angles are large!

Julia Gehrlein

Global fits to oscillation data:

all three mixing angles are non-zero \rightarrow possibility for CPV in lepton sector

currently least known parameter is δ which governs CPV in lepton sector

 \Rightarrow Want to measure $\delta!$

Julia Gehrlein

all three mixing angles are non-zero → possibility for CPV in lepton sector

currently least known parameter is δ which governs CPV in lepton sector

 \Rightarrow Want to measure $\delta!$

Is CP violated in the lepton sector?

Distinguish different flavor models

Neutrino oscillation parameters Current status of CPV search

NOvA, T2K experiments prefer NO no strong preference for NOvA, generally around $\delta \approx \pi$, T2K prefers $\delta \approx 3\pi/2$ \Rightarrow slight disagreement!

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

[Himmel '20]

- Neutrino 2022 update: similar results of T2K and NOvA using different statistical framework

Neutrino oscillation parameters Current status of CPV search

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

[Himmel '20]

Introduction of new neutrino interactions can fully resolve the tension Complex neutrino non-standard interactions with $|\epsilon| \approx 0.2, \ \phi \approx 3\pi/2, \ \delta \approx 3\pi/2, \ NO \ required$

> [Denton, JG, Pestes, 2008.01110, See also Chatterjee, Palazzo, 2008.04161

NOvA, T2K experiments prefer NO no strong preference for NOvA, generally around $\delta \approx \pi$, Neutrino 2022 update: T2K prefers $\delta \approx 3\pi/2$ similar results of T2K and NOvA using \Rightarrow slight disagreement! different statistical framework

Measurement of neutrino CPV Upcoming experiments HK and DUNE will measure $\delta!$

Measurement of neutrino CPV Upcoming experiments HK and DUNE will measure $\delta!$ Sensitivity to CPV >7 σ

- Experiments rely on inputs:
- Neutrino cross sections
- Initial neutrino flux
- Priors on oscillation parameters (CPV=3-flavor-effect!)

Measurement of neutrino CPV Upcoming experiments HK and DUNE will measure $\delta!$ Sensitivity to CPV >7 σ

In vacuum near first oscillation maximum

 $P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) = -16.$

 $pprox -8\pi$

Julia Gehrlein

$$J \sin\left(\frac{\Delta m_{31}^2 L}{4E}\right) \sin\left(\frac{\Delta m_{32}^2 L}{4E}\right) \sin\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$
$$J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}, \qquad J = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta \qquad \text{[Jarlskog '85]}$$

- Degeneracy between $\sin \delta$ and oscillation parameters
- However matter effects, neutrino vs antineutrino measurements, information around second oscillation maximum complicates simple analytical understanding

Measurement of neutrino CPV Upcoming experiments HK and DUNE will measure $\delta!$ Sensitivity to CPV >7 σ

- Experiments rely on inputs:
- Neutrino cross sections \Rightarrow Near Detector Initial neutrino flux (DUNE-PRISM) [JG, Kopp, ongoing] Priors on oscillation parameters (CPV=3-flavor-effect) \Rightarrow rely on results from other experiments/global fits

Global fit knowledge of oscillation parameters

Rescaled

Julia Gehrlein

[Denton, JG <u>2302.08513</u>}

CETUP* 2023: Solar parameters at LBL

17

Measurement of neutrino CPV Upcoming experiments HK and DUNE will measure $\delta!$

- Sensitivity to CPV >7 σ
- Experiments rely on inputs:
- cross sections \Rightarrow Near Detector Initial neutrino flux
- (DUNE-PRISM)
- \Rightarrow rely on results from • Priors on oscillation parameters (3-flavor-effect) other experiments/global fits
- How large is the impact of other oscillation parameters on the sensitivity/precision of δ ?

Here Comes the Sun: **Neutrino Oscillations**

Solar Parameters in Long-Baseline Accelerator

[Denton, JG <u>2302.08513</u>]

Measurement of neutrino CPV How large is the impact of other oscillation parameters on the sensitivity/precision of δ ?

- However matter effects, neutrino vs antineutrino measurements,
- information around second oscillation maximum complicates analytical understanding
- \Rightarrow Numerically analyse impact of oscillation prior on LBL data using GLoBES software **Results for** [Huber, Lindner, Winter, <u>0407333</u>]
 - Future experiments: DUNE, HK
 - Current experiments: T2K, NOvA
 - Using $\nu, \bar{\nu}$
 - ν_e appearance+ ν_μ disappearance

Julia Gehrlein

Degeneracy between $\sin \delta$ and oscillation parameters

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

Impact of oscillation parameter priors

Drastic reduction of sensitivity without using priors on both solar parameters! Without any priors: sensitivity $\leq 3\sigma$ for DUNE In general qualitative similar results for HK (focus on DUNE in following)

Impact of oscillation parameter priors

\Rightarrow Priors on solar parameters important to reach expected sensitivity

CETUP* 2023: Solar parameters at LBL

Julia Gehrlein

[Denton, JG <u>2302.08513</u>]

Impact of oscillation parameter priors

\Rightarrow Drastic reduction of precision on δ without priors on both solar parameters!

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

[Denton, JG <u>2302.08513</u>]

Julia Gehrlein

Impact of oscillation parameter priors

[Denton, JG <u>2302.08513</u>]

Sensitivity to discover $\delta = -90^\circ$ varying best fit values of solar parameters while keeping their uncertainty fixed

Depending on best fit values from KamLand to solar reduces sensitivity by $> 1\sigma!$

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

[Denton, JG <u>2302.08513</u>]

Without solar priors the sensitivity does not reduce to zero \rightarrow DUNE-LBL is sensitive to solar parameters

DUNE-LBL sensitivity to solar parameters [Denton, JG <u>2302.08513</u>] 40 experiments 20 $\Delta m^2_{21} [10^{-5} eV^2]$ 0 solar experiments) three flavor paradigm! -20— KamLAND ____ SK+SNO DUNE-LBL sensitivity JUNO sensitivity – HK–LBL sensitivity — DUNE–solar sensitivity -40 0.2 0.3 0.4 0.0[°] 0.1 0.5 $\sin^2(\theta_{12})$

Julia Gehrlein

Some sensitivity to solar parameters at future LBL

Not competitive with JUNO or DUNE-solar (Comparable sensitivity to solar mass splitting as

However allows LBL experiments to cross check

DUNE-LBL sensitivity to solar parameters [Denton, JG <u>2302.08513</u>]

CETUP* 2023: Solar parameters at LBL

Some sensitivity to solar parameters at future LBL experiments Can rule out vanishing solar parameters at 7σ sigma Determine sign(Δm_{21}^2) at ~ 1σ

Impact of solar parameters On other quantities [Denton, JG <u>2302.08513</u>]

Future experiments will also measure Δm_{31}^2 , θ_{13} , θ_{23}

Solar parameters also play an important role there

Julia Gehrlein

		-
/		-
		_
		-
		-
		-
		-
		-
		-
		-
		-
		_
:4		-
with pric	ors	
		-
without	t	_
solar nrid	ors	-
solui pin	015	-
without (9 ₁₃ pi	rior
0.′	7	

Conclusions

- Next generation LBL experiments will measure δ
- First study of solar parameters at LBL experiments
- To achieve envisioned sensitivity and precision: Priors on solar parameters required!
- Some sensitivity to solar parameters at LBL \rightarrow important cross check of 3- flavor-
- Solar parameters are important for measurement of remaining parameters $(\Delta m_{31}^2, \sin^2 \theta_{13})$

paradigm

Current LBL experiments: similar results but sensitivity worse even with priors

Thanks for your attention!

Julia Gehrlein

Backup: analysis details

Extreme values of probability assuming $\delta = -90^{\circ}$ varying θ_{12} or Δm_{21}^2

Julia Gehrlein

[Denton, JG <u>2302.08513</u>]

Backup: analysis details

Experiments studied

Experiment	Technology	Fiducial Volume	Total POT $(\nu + \bar{\nu})$	$ u:\overline{ u} $	Data	$\Delta m^2_{21} \ [10^{-5} \ { m eV^2}]$	$ \sin^2 \theta$
NOvA	Scintillator	$25 \mathrm{kT}$	$7.2 imes 10^{21}$	1:1	SK+SNO	6.10	0.30
T2K	Water Cherenkov	$22.5 \ \mathrm{kT}$	$10 imes 10^{21}$	1:1	KamLAND	± 7.54	0.31
DUNE-LBL	LArTPC	40 kT	14×10^{21}	1:1	SK+SNO+KamLAND	7.49	0.30
HK-LBL	Water Cherenkov	$190 \ \mathrm{kT}$	$27 imes 10^{21}$	1:3		7.42	0.30
				-	Global fit	7.5	0.31
	Uncer	tainties				7.36	0.30

Uncertainties

		$\delta x/x$		
Generation	Data	Δm^2_{21}	$\sin^2 heta_{12}$	
Current	SK+SNO	15%	4.6%	
	KamLAND	2.5%	9.5%	
	SK+SNO+KamLAND	$\mathbf{2.4\%}$	4.3%	
		2.8%	4.3%	
	Global fit	2.9%	5.0%	
		2.2%	4.3%	
Future	DUNE-solar	5.9%	3.0%	
	JUNO	0.3%	0.5%	

[Denton, JG <u>2302.08513</u>]

Current best fit values

$$\sin^2 2\theta_{13} = 0.0853 \ (\pm 2.8\%) \text{ from } [77],$$

 $\Delta m_{32}^2 = 2.454 \times 10^{-3} \text{ eV}^2 \ (\pm 2.3\%) \text{ from } [77]$
 $\sin^2 \theta_{23} = 0.57 \ (\pm 7.0\%) \text{ from } [78]$

Backup: HK

Julia Gehrlein

[Denton, JG <u>2302.08513</u>]

Backup: Other parameters [Denton, JG 2302.08513]

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

Backup: Results

Julia Gehrlein

CETUP* 2023: Solar parameters at LBL

[Denton, JG <u>2302.08513</u>}

Backup: Results

Julia Gehrlein

[Denton, JG <u>2302.08513</u>]

U LUCEI

Backup: Current status of CPV in lepton [Denton, JG, Pestes, 2008.01110, sector See also Chatterjee, Palazzo, 2008.04161] Complex NSI with $|\epsilon| \approx 0.2$, $\phi \approx 3\pi/2$, $\delta \approx 3\pi/2$, NO can fully resolve the tension

orange preferred over SM at integer values of $\Delta \chi^2$, dark gray disfavored at $\Delta \chi^2 = 4.61$ Allowed region evades constraints from atmospheric neutrinos at IceCube and neutrino scattering experiments

Julia Gehrlein

