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* we focus on optically thick regime



optically thick regime

dark matter can scatter many times as it passes through Earth

opportunities for studying otherwise unconstrained parameter space

— deep-underground direct detection experiments shielded, so need another
way to close parameter space at large o,

— evaporation calculation more tricky, affecting constraints at low mass

new aspects to the analysis
— low-mass dark matter can bounce off the Earth (“ping-pong effect”)
— must deal with three-body gravitational effects

some studies use analytic treatments
we use a numerical simulation using modified DaMaSCUS code

— can address some more complicated features



pathway to DM accumulation

dark matter scatters, loses energy, and is gravitationally captured by Earth
continues scattering and thermalizes with SM matter
thermal dark matter distribution can annihilate or evaporate

total number accumulated (N) determined by equilibrium of capture (C),
annihilation (A) and evaporation (E) rates

d—N:C—[E]N—ANZ
dt N



outline

e dark matter capture in the optically-thick regime
e density profile

* evaporation

e annihilation

e application to bounds on dark matter annihilation via anomalous Earth
heating



DM capture — our basic approach

assume a Maxwell-Boltzmann distribution (boosted) for DM far from Sun

particles incident on Earth after including acceleration due to Earth and
Sun gravitational potential

propagate with DaMaSCUS until particles drop below Earth escape speed
— captured
— 3D Earth model includes atmosphere, crust, mantle, core

if particle leaves Earth with v > v, (Earth escape speed) = gone

determine the fraction of incident particles which are captured, and will
eventually thermalize

numerical simulation is computationally intensive, but worth it ....
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“Fapproaches to optically-thick regime

several works use analytic approximations, but can miss some features
which matter in optically-thick regime

one approach is to only consider capture after a single scatter, but account
for attenuation of flux (G,pP-R 1702.02768; B, M-A, P-R 1208.0824 — for Sun)

— interpolates between optically-thin and geometric capture rates
— C= Cthin [1 - exp(_cgeom/cthin)]
— only accounts for capture after multiple scatters through “reprocessing”

another approach = analytic approximation to multiple scattering (rt, Js
2209.09834)

— actual evolution of kinetic energy

— may not fully account for varying composition of Earth, detailed DM trajectory
(except in limiting cases) (but see Chris’ talk for recent progress ....)



comparison to single scatter

treatment
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comparison to single scatter
treatment

* including multiple scatters washes out the effect of kinematic resonances

* impact from solar potential on extrapolation from single scatter

need AE, _/E~mum /(m,+m)2>(v2+v?) /(v +v2+v?)

if you ignore solar potential (v,=0), then for any m,, some particles (v ~ 0) can
be captured with a single scatter
if you assume reprocessing, reach geometric cross section for large o,

but if you include solar potential, then for heavy or light x, can never capture
with a single scatter, so not captured at all

* but solar potential has little impact on MC result, even though v, > v,

related to slope of the low mass regime



ping-pong effect

for m, <'m,, scattering is nearly
isotropic

— DM random walks through Earth
until dropping below escape vel.

— if it leaves Earth, it is gone

= Nyt ~2 (mA/mX) In (Vi/vf)

— fraction captured ~ N__."%/2 (NFm,
1805.08794)

— sof_scales as m,'/?, but only
logarithmically with v,

scat

but for low mass, f, < 1
what about details?



MC shows a peak in capture
fraction near o, ~ 102 cm?

— for larger o, capture/reflection
in atmosphere

— for smaller o,\, atm. transparent,
capture/reflection off crust

in between, some DM reflected
off Earth reflects back off
atmosphere
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multi-scatter analytic (M3) result
(RKL, JS 2209.09834)

- N

— straight line trajectory at large m,

-1/2 H
oot 2 scaling at small m,

— assume one element

match geometric at large o,,,, m

XN’ X
M3 overestimates capture at low
mass, but not so relevant

— will evaporate away anyway

M3 underestimates capture at
large m,
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density distribution

* DM in local thermodynamic 5
equilibrium (LTE)(see Aaron’s talk)  —my=1keV  ——m,=1GeV
4L ==my=1MeV —m, =10 GeV
— like ideal gas in thermal equi. [ my =100 MeV

with SM (Earth)
— grav. potential as p,,

* given N, determines n,(r)
— heavier DM sinks

e density distribution affects

— evaporation

* rate depends on T(r), n,(r)
— annihilation rate within Earth n,(r) [T.(r)
T.(0)

T do
—Z 4m,—
dr' “dr'

3/2
RN

a(r) = thermal diffusivity parameter

G T, dr'
« annihilation in atmosphere not n,(0)
constrained by Earth heating

Nauenberg PRD36 (1987) 1080
Gould, Raffelt, ApJ352 (1990) 654



evaporation

e evaporation rate given by
likelihood that DM at ris
scattered above escape vel, and
doesn’t scatter back down
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— effect of atm. is important, since
it is cooler and can block evap.

— use G,P-R1702.02768
e evaporation rate per particle A ORI TY
(E/N) depends only on m,, o, dGey
* saturates form, < 100 MeV

* forlarger o,,, evaporation
saturates at smaller m,
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annihilation
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for SI/SD, some space
opens up at low mass

for SD (a,=0), some space
closed off at large o,
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e can apply these results to other search strategies and targets
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“*matching in the optically-thin regime
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evaporation rate (G,P-R 1702.02768)

cO

47Tuif@du>(/ Rj (uy = v)dv.

Ve (1)

s(r) = NangTImult e~ () - likelihood of getting out without scattering
back below escape velocity

would be interesting to update with a Monte Carlo analysis for low mass regime

could affect s(r)
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