Asteroid-mass Dark Matter

Tao Xu University of Oklahoma

CETUP*2023 Workshop June 19, 2023

• Asteroid-mass primordial black holes (PBHs) and their searches.

Kaustubh Agashe, Jae Hyeok Chang, Steven J. Clarks, Bhaskar Dutta, Yuhsin Tsai, <u>TX</u> arXiv: 2202.04653

• Detecting BSM particles with Hawking radiation of PBHs.

Kaustubh Agashe, Jae Hyeok Chang, Steven J. Clarks, Bhaskar Dutta, Yuhsin Tsai, <u>TX</u> arXiv: 2212.11980

• Stellar binary hardening as a new method to probe light PBHs.

Badal Bhalla, Benjamin V. Lehmann, Kuver Sinha, <u>TX</u> 2307.XXXXX

- Origin of PBHs related to interesting cosmology models.
- PBHs are heavy dark matter candidates.
- Hawking temperature is higher for light PBHs.
- Interesting phenomenology of particle production with Hawking radiation.

PBHs can exist in a wide mass range

Primordial Black Holes

Light PBHs completely evaporated in the early universe is difficult to probe

Big Bang Nucleosynthesis

Requiring PBH totally evaporate **before** BBN $\tau_{\rm PBH} < 1$ s, leads to $M_{\rm PBH} \lesssim 10^9$ g

Initial condition of the universe

Largest inflationary Hubble parameter $H_I/M_{\rm Pl} < 2.5 \times 10^{-5}$ means $M_{\rm PBH} \gtrsim 0.1$ g Planck 2018

$$0.1g \lesssim M_{\rm PBH} \lesssim 10^9 {\rm g}$$
 still allowed

PBHs in this mass window can affect cosmology with Hawking radiation.

Primordial Black Holes

For lighter PBHs which have evaporated today, constraints can be set with BBN, CMB and gamma-ray observations.

Primordial Black Holes

evaporation, lensing, gravitational waves, dynamical effects, accretion, CMB distortion, large scale structure

Hawking radiation

Particle production around horizon due to tidal force:

$$\frac{\partial N_i}{\partial E_i \partial t} = \frac{g_i}{2\pi} \frac{\Gamma_i}{e^{E_i/T_{\text{PBH}}} \pm 1}$$

BH Hawking temperature:

$$T_{\rm PBH} = \frac{1}{8\pi G M_{\rm PBH}} \simeq 10.5 \left(\frac{10^{15} \,\mathrm{g}}{M_{\rm PBH}}\right) \,\mathrm{MeV}$$

Asteroid-mass PBHs are Hawking evaporating at $\mathcal{O}(MeV)$ energy.

We can use gamma-ray to constrain PBHs as (fraction of) DM:

Future MeV Sky

- Covers gamma-ray energy $0.1 \text{ MeV} \lesssim E_{\gamma} \lesssim 100 \text{ MeV}$
- Corresponds to the Hawking temperature of PBHs

 $10^{14} \text{ g} \lesssim M_{\text{PBH}} \lesssim 10^{17} \text{ g}$

e-Astrogam, 1611.02232

Gamma-ray and GWs

Gravitational waves are generated by curvature perturbations at PBH formation.

Multi-messenger observations of gamma-ray and GWs to study asteroid-mass PBH DM.

color band: signal for future searches

PBH form from the collapse of large over-dense regions in the early universe

PBH mass is fraction of horizon patch mass

$$M_{\rm PBH} \simeq 4 \times 10^{15} \text{ g} \left(\frac{k}{10^{15} \text{ Mpc}^{-1}}\right)^{-2}$$

For asteroid-mass PBHs, we need

 $10^{14} \text{ Mpc}^{-1} \leq k \leq 10^{15} \text{ Mpc}^{-1}$ or $10^{6} \text{ GeV} \leq T_i \leq 10^{7} \text{ GeV}$

Formation density contrast $\delta \simeq \delta_c \simeq \mathcal{O}(0.1)$ and assuming Gaussian $\delta \sim \sqrt{P_{\zeta}}$

 $P_{\zeta} \sim 10^{-2}$ needed for PBH formation is less constrained on small scales

The PBH formation mechanism can be tested with GWs sourced by $P_{\mathcal{Z}}$

$$f_{\text{GW},\zeta}^{\text{peak}} = 1.546 \times \left(\frac{k_p}{10^{15} \text{Mpc}^{-1}}\right) \text{Hz} \qquad \Omega_{\text{GW,today}} \simeq P_{\zeta}^2 \times \Omega_{\text{CMB,today}} \sim 10^{-9}$$

large $P_{\mathcal{L}}$ for PBH formation predicts strong GWs at ~Hz frequency

parameter fit to the curvature perturbations responsible for PBH formation

$$P_{\zeta}(k) = \frac{A}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\log k - \log k_p)^2}{2\sigma^2}\right)$$

Multi-messenger observation can test PBH DM abundance and cosmic origin

K. Agashe, J.H. Chang, S.J. Clarks, B. Dutta, Y. Tsai, <u>TX</u> 2202.04653

BSM with PBHs

Hawking radiation rate of particle *i* from a non-rotating BH:

$$\frac{\partial N_i}{\partial E_i \partial t} = \frac{g_i}{2\pi} \frac{\Gamma_i}{e^{E_i/T_{\text{PBH}}} \pm 1}$$

• particle mass **kinematically allowed** $m_i \lesssim E_i \lesssim T_{\text{PBH}}$

Asteroid-mass PBHs can produce MeV or lighter BSM particles

• production via gravity only depends on **degree of freedom** g_i , not coupling

Hawking radiation is another channel to produce new particles in the spectrum

- can we use PBH DM as a **BSM particle factory**?
 - "built" in the early Universe
 - energy scale determined by Hawking temperature
 - large BSM particle production rate, even if non-gravitational interaction is feeble
 - clear SM "background" spectrum from Hawking radiation calculation

• If exists an Axion-Like-Particle in the particle spectrum

$$\mathscr{L}_{a\gamma\gamma} \supset \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a - \frac{1}{2} m_a^2 a_a^2 + \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

light pseudoscalar couples to photons

• Gamma-ray spectrum is modified by ALPs

Gamma-ray spectrum, **SM** (purple) vs. **SM+ALP** (red, green, blue).

the $a \rightarrow \gamma \gamma$ decay generates a **double-peak** feature

Galactic gamma-ray search

Example gamma-ray spectrum from galactic center, PBH mass and abundance $M_{\rm PBH} = 10^{15}$ g, $f_{\rm PBH} = 10^{-8}$.

We can perform spectrum analysis with number of photons in the energy bins.

Discovery of PBHs

PBH constraint depends on theory assumptions of Hawking radiation spectrum.

Previous sensitivity assumes only SM particles are produced and contribute to photons.

Discovery of PBHs

When ALPs are produced together with SM particles, the gamma-ray flux is enhanced.

PBH constraints are **stronger if ALP exists.**

Identification of ALPs

If f_{PBH} is larger than the detection limit, enough statistics to **distinguish** the ALP.

We will be able to know if ALP exists from the shape of gamma-ray spectrum.

ALP parameter space

ALP parameter space that can be probed with PBHs.

- **Dynamical method** to probe PBHs is important complementary if Hawking radiation signal is not accessible, for example when PBHs are heavier or PBHs are extremal.
- Dynamical method that **depends only on gravitational effects** from the PBH mass can apply to other heavy DM model in the asteroid-mass range as well.

Three-body gravitational interaction between stellar binary and PBH encounter.

Badal Bhalla, Benjamin V. Lehmann, Kuver Sinha, TX

Heggie's law

• Binary of stars $m_{1,2}$ is described by the **binding energy** E_b and the **semi-major axis** a.

$$E_b = -\frac{G_N m_1 m_2}{2 a}$$

• Energy is transferred between the binary and the perturber during the three-body encounter process.

• Heggie's law in stellar dynamics:

Hard binaries tend to become harder and soft binaries tend to become softer.

• Whether a binary is hard or soft depends on the kinetic energy of the perturber,

Hard binary:
$$\frac{G_N m_1 m_2}{2 a} > \frac{1}{2} m_p \sigma_p^2$$

binary **lose energy** to perturber
 E_b more negative
axis shrinks $a_f < a_i$

Soft binary: $\frac{G_N m_1 m_2}{2 a} < \frac{1}{2} m_p \sigma_p^2$ binary **gain energy** from perturber E_b less negative axis expands $a_f > a_i$

- If the perturber is PBH, the velocity is fixed by the DM velocity $\sigma_p \rightarrow \sigma_{\chi} \sim 10^{-3}$.
- The binary binding energy vs. PBH kinetic energy relation is determined by $M_{\rm PBH}$.
- A stellar binary behaves as hard binary for light PBHs and as soft binary for heavy PBHs

Wide binary hardening

- Total hardening rate is proportional to energy density, not single PBH mass.
- Hardening effect is more efficient for wide binaries.

Summary

- Asteroid-mass PBH is an interesting example of heavy DM. MeV gamma-ray signals from the Hawking radiation process can be used to probe PBHs. Multi-messenger observation with GWs provides more information about the abundance and origin.
- Hawking radiation is via gravity. PBHs can produce new particles efficiently as long as the new particles are not much heavier than the Hawking temperature.
- We use ALP as an example to show that gamma-ray spectrum analysis can be used to probe both PBHs and the BSM degrees of freedom that could have been produced via Hawking radiation.
- We find three-body encounter between stellar binary and asteroid-mass DM can lead to a novel hardening effect. Future wide binary data will provide a new way to probe asteroid-mass DMs with their gravitational effects.

Thank you!