The LZ Dark Matter Experiment: Update for the 2022 SURF User Association General Meeting)

Dr. Sally Shaw - <u>sally.shaw@ed.ac.uk</u> LZ Physics Coordinator

The LZ Collaboration

- Black Hills State University
- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison

Science and Technology Facilities Council

January 2021 Collaboration Meeting

History of Direct Detection with Liquid Xenon

XENON10 **ZEPLIN-III** XENON100 **ZEPLIN-II** 15 kg 62kg 31 kg 12 kg (7.2 kg)(5 kg) (34 kg) (7 kg) $6.6 \times 10^{-43} \text{ cm}^2$ $8.8 \times 10^{-44} \text{ cm}^2$ 8.1×10-44 cm² $3.4 \times 10^{-44} \text{ cm}^2$ 2007 2007 2008 2010

LZ: a Dual Phase Liquid Xenon TPC

LZ: a Dual Phase Liquid Xenon TPC

We are trying to detect **nuclear recoils of Xe atoms** from the scattering of our own Milky Way dark matter particles.

Most backgrounds are electron recoils.

Two signals: → scintillation (S1) in liquid → ionisation (S2) in gas

ER/NR discrimination: from ratio of S1 and S2 signals

3D position Incoming **reconstruction:** Particle $XY \rightarrow PMT$ array $Z \rightarrow \Delta t$ of S1 & S2

LZ SURF, USA

17T Gd-loaded liquid scintillator

120 veto PMTs

2T LXe skin veto

131 skin PMTs

Calibration source deployment tubes (3 total)

60,000 gallons of ultrapure water

494 LXe PMTs

7T active LXe target

Neutron calibration conduit (2 total)

LZ Timeline

CD3 & TDR March 2017

2017

PMT arrays arrive Dec 2018

2018

TPC Complete Aug 2019

FFR assembly

Dec 2018

Cryostat & TPC move underground Oct 2019

2019

Grid manufacture Spring 2018

OD tanks go underground Oct-Nov 2018

Cryostat arrives May 2018

Electronics installation Autumn 2020

HV install & sealed March 2020

OD construction Winter 2020

Dec 2021 **OD** Fill une 2021

Science Run 1

SR1 Timeline

Goal: collect 60 livedays

Pause for calibrations 17th - 26th Jan

SR1 begins 22nd Dec

LET'S LOOK AT SOME WAVEFORMS

Results Day

Detector Response

Mono-energetic ER peaks used to determine initial detector gains through a **Doke plot analysis**

ER & NR bands characterised through ²²⁰Rn injection and DD, NEST tuned to provide final $g_1 \& g_2$

Background Modeling

Science Run 1

WIMP Search 60 live days 5.5 t LXe 335 events

Background model NR Band Ar37 B8 solar v 30 GeV WIMP

Spin-Independent WIMP Limits

World leading sensitivity to WIMPs established with just 60-livedays of data

Minimum cross section: 5.9×10⁻⁴⁸ at 30 GeV

Spin-independent WIMP-nucleon-scattering

Spin-Dependent WIMP Limits

World leading for SD WIMP-neutron scattering

SD: WIMP-neutron

Physics Reach & Future Sensitivity

Effective Field Theory Couplings

Investigating other WIMPnucleon couplings through **Effective Field Theory**

Neutrino & Nuclear Physics

Coherent elastic neutrino-nuclear scattering(CEvNS) of Boron-8 solar neutrinos

2-neutrino double electron capture (2vDEC) of Xe124

Neutrinoless double betadecay $(0\nu\beta\beta)$ of Xe134 and Xe136

Exotic Low Energy ER Physics

Hidden Photons

Summary

- LZ is currently **world leading**! Results were released July 2022
- Summer 2022 was spent making improvements & optimizing detector conditions
- Science Run 1 was just 60 livedays but proved LZ's capability to do excellent science
- We are taking science data again, expect ~1 year of exposure
- Exciting physics on the horizon!
 - WIMP searches, EFT models, axions, ALPs, hidden photons, MIMPs, $0\nu\beta\beta$, 2ν DEC, CE ν NS and more...

FACEBOOK.COM/LZDARKMATTER

