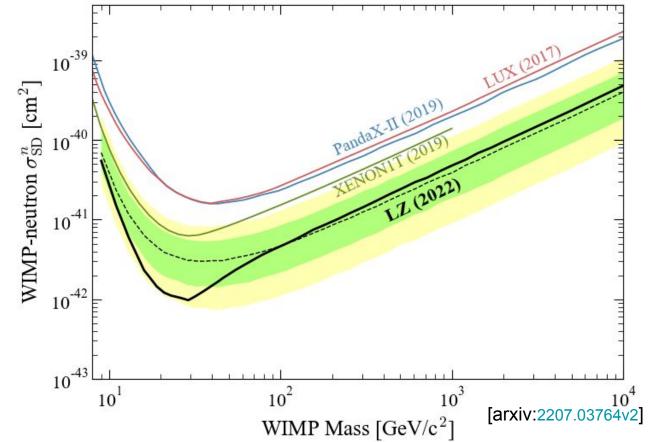
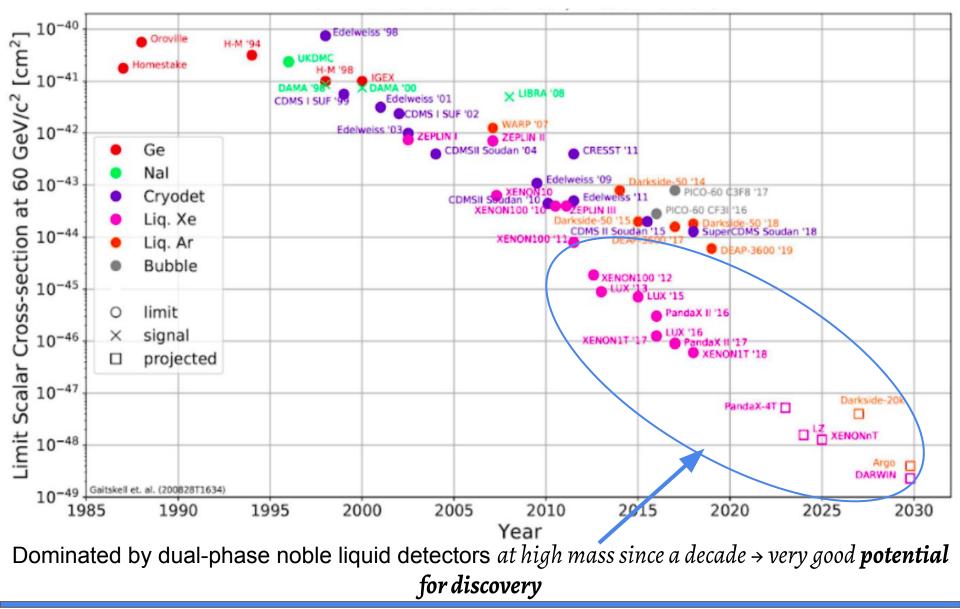
A Next-Generation Liquid Xenon Observatory for Dark Matter & Neutrino Physics

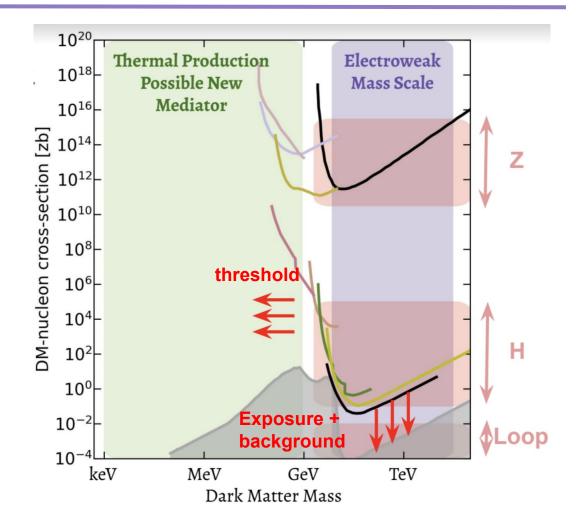

Alvine Kamaha (UCLA) SURF User Association Annual General Meeting October 24-26, 2022 International In

www.sanfordlab.org

anford


Dark Matter (DM) Direct Detection: Status

Fantastic first science results by LZ experiment hosted at **SURF** (see talk by S. Shaw) displaying the great potential of the LXe technology and what can be achieved with LZ in ~ 5years timeline


Noble liquid **Xenon detectors** (*e.g LZ*, *XENONnT*) lead the direct search for *high mass* WIMP dark matter particles

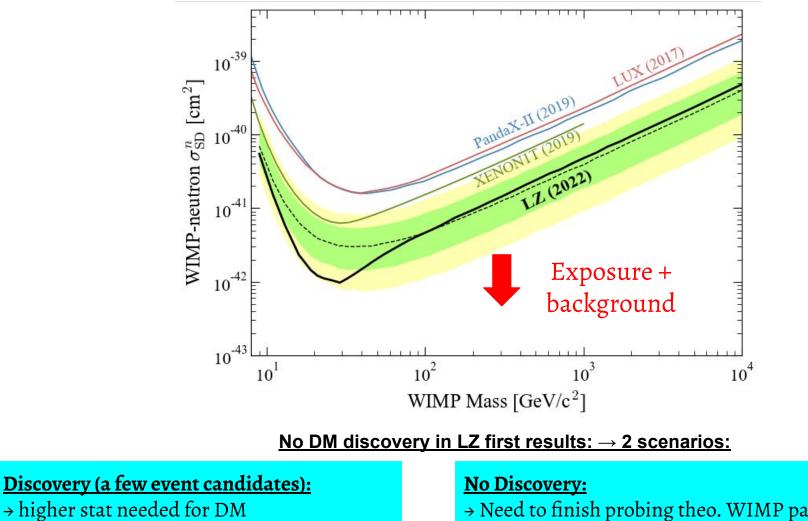
DM Direct Detection: past, present & future

Relevant Highlight from SNOWMASS'21

Cosmic Frontier (CF1) Vision for dark matter over the next decade

Key message from the SNOWMASS'2021 particle physics community study:

Delve Deep and look left


Relevant Highlight from SNOWMASS'21

Cosmic Frontier (CF1) Vision for dark matter over the next decade We are going to need a BIGGER detector!

Key message from the {

Delve Deep and look left

DM Direct Detection: Beyond LZ & XENONnT

→ Need to finish probing theo. WIMP parameter spaces

Need to build **bigger and smarter detector** in either case

A Kamaha

characterization

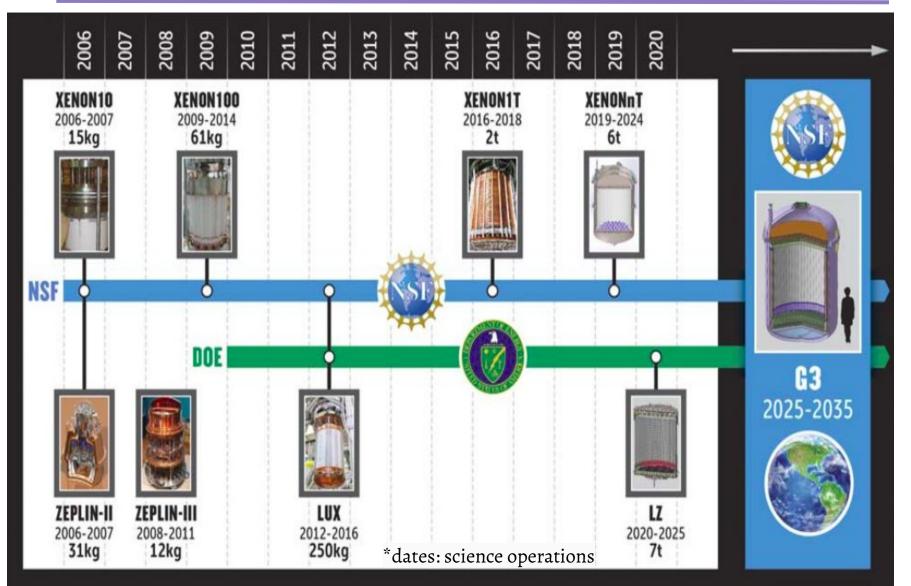
XLZD: A Unified Community

Coming together from the whole LXe community

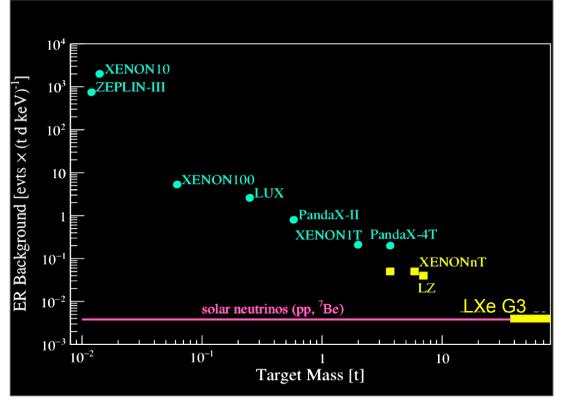
Joint Whitepaper: **600 authors** from **141 institutions** across the globe

Consortium formed by leading experiments in the field XENONnT/DARWIN & LZ

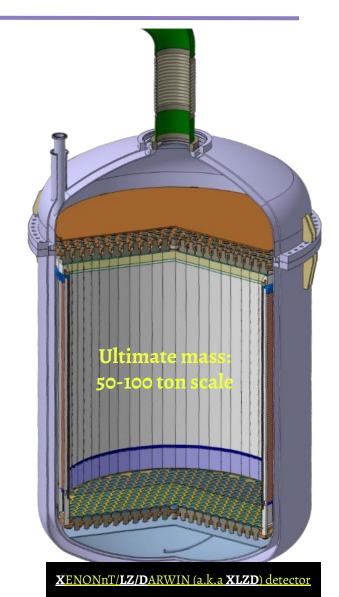
Already **official** and **active**


- First "collaboration" meeting in Europe in Summer 22
- Second "collaboration" meeting in US in Spring 23
- Weekly calls to discuss working group progress & status, etc ...

XLZD Meeting in Karlrushe, Germany (June 2022)

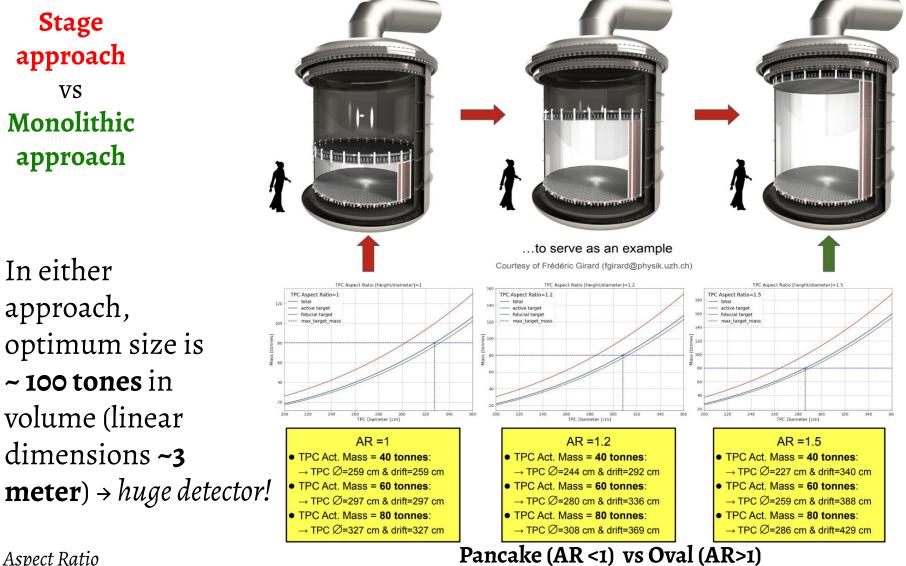

XLZD: funding in US

Note: M€ invested through various grants in Europe

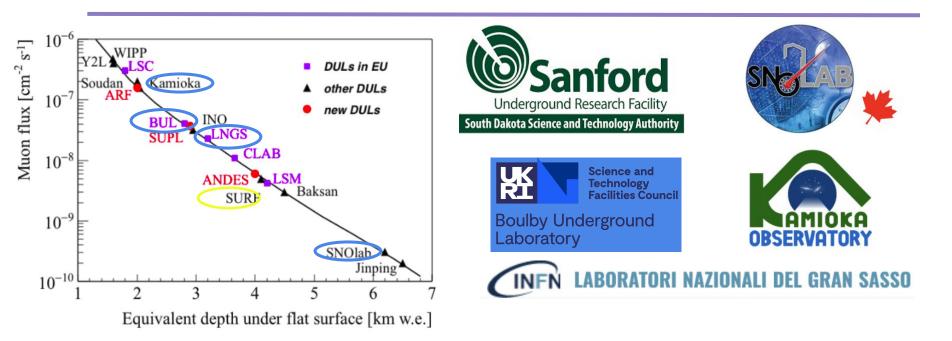


XLZD: the ultimate WIMP detector & beyond

• Optimal scale-up of the existing LXe technology down to the neutrino "fog"

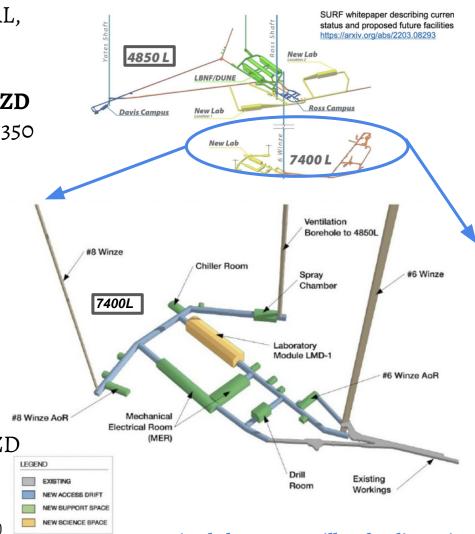

- Start after LZ & XENONnT
 - Science Ops late 2020's
- Various R&D currently ongoing in several institutions

XLZD R&D: Detector Conceptual Design & Size


In either

AR: Aspect Ratio

A Kamaha


XLZD: Siting

- 5 sites are being evaluated for XLZD (<u>SURF</u>, KAMIOKA, BOULBY, SNOLAB & LNGS)
 - Well known sites which demonstrated good supporting capabilities (SC) to carry out the science goals of state-of-the-art rare event search experiments.
- A next generation G3 detector like XLZD (~**3 meter** scale) will require **additional SC**: significant staging space and underground fabrication capabilities (e.g. larger and lower RRCR) than what currently exist in most of these facilities.
 - Required cavity ~20 to 25 meters in diameter: Gran Sasso (exist), Boulby (new construction), SURF (new construction or shared with LBNF)
 - UG access is generally a challenge and should be carefully planned

XLZD: Siting @ SURF

- Great support during LZ construction @ SAL, UG transport & daily LZ operation
 - Surface lab (class 100 CR 54 m^2 , 240 m^3)
 - But LZ underground site small for XLZD & U/G Rn concentration too high (300-350 Bq/m³) ⇒ mitigation strategies will be required.
 - \Rightarrow New space needed, options:
 - New lab module @ 4850L (50-100m x 20m x 28 m) through LBNF?
 - New lab module @7400L under discussion?
- Cosmic ray shielding and environmental #8 backgrounds @4850L/4300 mwe meet XLZD requirements
 - (NIM A 638, (2011) 63-66)
 - (Astropart.Phys. 116 (2020) 102391, NIM A 812, (2016) 1-6)
- Need to think about *pesky* neutrino beam

7400L -Deep option below 4850L still under discussion. Offers x20 reduction in muons compared to other sites

XLZD: the ultimate WIMP detector & beyond

A rich science program discussed on 77 pages [arxiv 2203.02309]

III. Broadening the Dark Matter Reach

B. Charge-Only Analysis

Responses

E. Hydrogen Doping

F. Upscattered Dark Matter

H. FIMPs and Super-WIMPs

I. Asymmetric Dark Matter

J. Composite Dark Matter

L. Luminous Dark Matter

1. Dark Photons

Asymmetry

K. Mirror Dark Matter

A. Double Photoelectron Emission

C. General Dark Matter-Induced Atomic

D. Migdal Effect and Bremsstrahlung

G. Dark Matter Annihilation Products

2. Axions and Axion-Like Particles

3. Solar Axions, Dark Matter, and Barvon

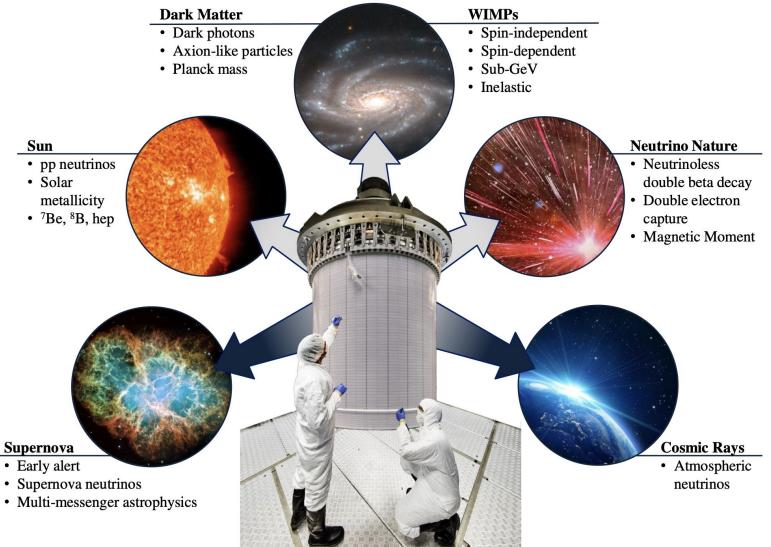
- I. Introduction
 - A. An Observatory for Rare Events
 - B. Evidence for Dark Matter
 - C. Dark Matter Direct Detection
 - D. An Evolution of Scales
 - E. The Liquid Xenon Time Projection Chamber
 - F. Xenon as a Detector Medium

II. Dark Matter WIMPs

- A. WIMP Direct Detection
- B. WIMP Sensitivity Projections: Method
- C. Spin-Independent WIMPs
- **D.** Spin-Dependent Scattering
- E. Effective Field Theory
 - 1. Nonrelativistic Effective Field Theory
 - 2. Chiral Effective Field Theory
 - 3. WIMP-Pion Coupling
 - 4. Three-Flavor EFT and the UV
- F. Nuclear Structure Factors
- G. Inelastic Scattering
- H. Discriminating Between WIMP-Nucleus Responses
- I. Scattering at High Momentum Transfer
- J. Simplified Models
- K. Electroweak Multiplet Dark Matter
- L. Implications for Supersymmetry
- M. Inelastic Dark Matter
- N. Self-Interacting Dark Matter
- **O.** Leptophilic Interactions
- P. Modulation Searches
- Q. Confronting the Neutrino Fog

- B. Double Electron Capture on ¹²⁴Xe C. Other Double-Beta Processes
- V. Neutrinos for Astrophysics
- A. Neutrino Interactions
 - 1. Coherent Elastic Neutrino-Nucleus Scattering
 - 2. Electroweak Interaction
 - B. Solar Neutrinos
 - 1. Boron-8 Solar Neutrinos (NR)
 - 2. Hep Solar Neutrinos (NR)
 - 3. pp Solar Neutrinos (ER)
 - 4. CNO Neutrinos (ER)
 - 5. Neutrino Capture on Xenon-131 and Xenon-136
 - C. Atmospheric Neutrinos (NR)
 - D. Supernova Neutrinos (NR)
 - 1. Galactic Supernova Neutrinos
 - 2. Pre-Supernova Neutrinos
 - 3. Supernova Early Warning System
- 4. Diffuse Supernova Neutrinos
- E. Terrestrial Antineutrinos (ER)
- F. Other Neutrino Physics
 - 1. Measuring the Weinberg Angle 2. Electron-Type Neutrino Survival Probability
 - 3. Searching for New Physics of Neutrinos

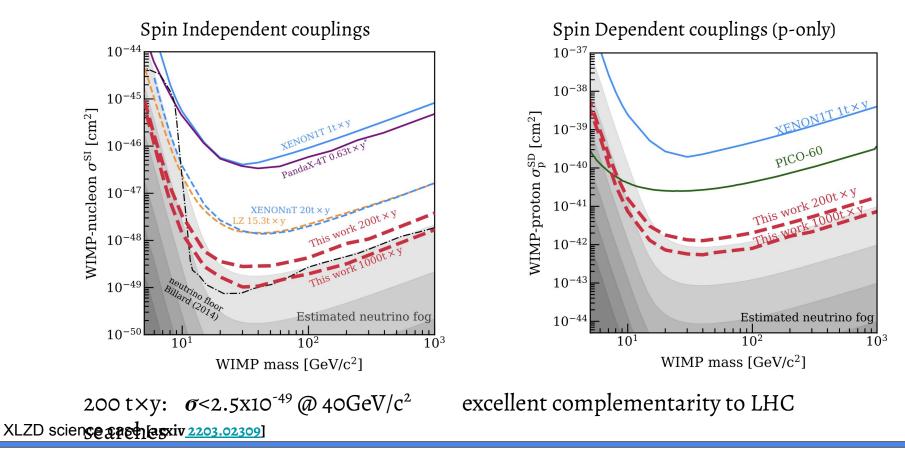
- VI. Additional Physics Channels
 - A. Solar Axions
 - B. Neutrino Dipole Moments and Light Mediators
 - C. Fractionally Charged Particles
 - D. Nucleon Decay
 - E. Short-Baseline Oscillations
- VII. Background Considerations
 - A. Underground Laboratories
 - B. Fiducialization
 - C. Material Selection
 - D. Intrinsic Background Mitigation
 - E. Isolated Light and Charge Signals and Accidental Coincidences
 - F. Monte-Carlo Simulation of Backgrounds 1. Background Model
 - 2. Generation of S1 and S2 Signals
 - G. Discrimination
- VIII. Complementarity with Other Experimental Efforts
 - A. Crossing Symmetry for Freeze-Out Relic Particles
 - B. Dark Matter at Colliders
 - C. Indirect Dark Matter Searches
 - D. Measurements of Standard Model Parameters
 - E. Other Direct Dark Matter Searches 1. Solid State Detectors
 - 2. Liquid Target Detectors
 - F. Neutrinoless Double Beta Decay Experiments
 - G. $CE\nu NS$ Experiments
 - H. Solar Neutrino Experiments
 - I. Gravitational Wave Searches
 - J. Xenon in Medical Physics
 - K. Liquid Xenon TPCs for Nuclear Security
 - L. Data-Intensive and Computational Sciences
 - IX. Research Community Priority
 - A. Dark Matter
 - B. Neutrinoless Double Beta Decay
 - C. Neutrinos
 - X. Summary
 - XI. Acknowledgements
 - References


- **IV.** Double Beta Processes
- A. Neutrinoless Double Beta Decay of ¹³⁶Xe

M. Magnetic Inelastic Dark Matter

N. Dark Matter around the Planck Mass

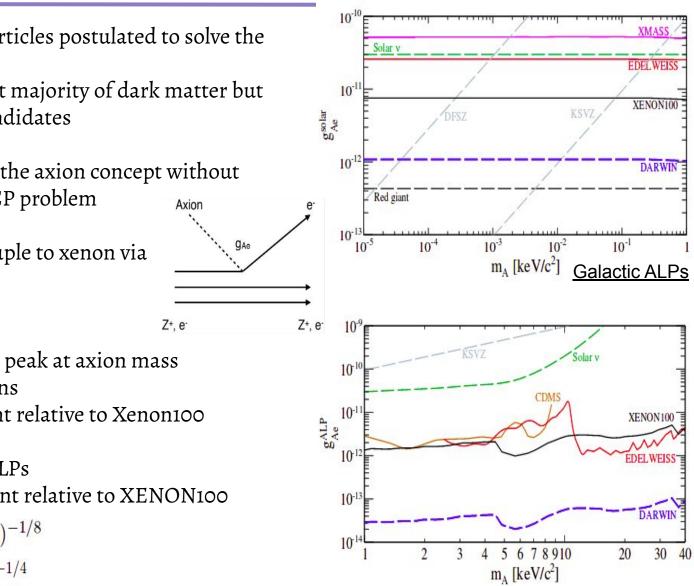
- Not only dark matter!


XLZD: A Rare Event Observatory

XLZD science case [arxiv_2203.02309]

DM Physics: XLZD WIMP Sensitivity

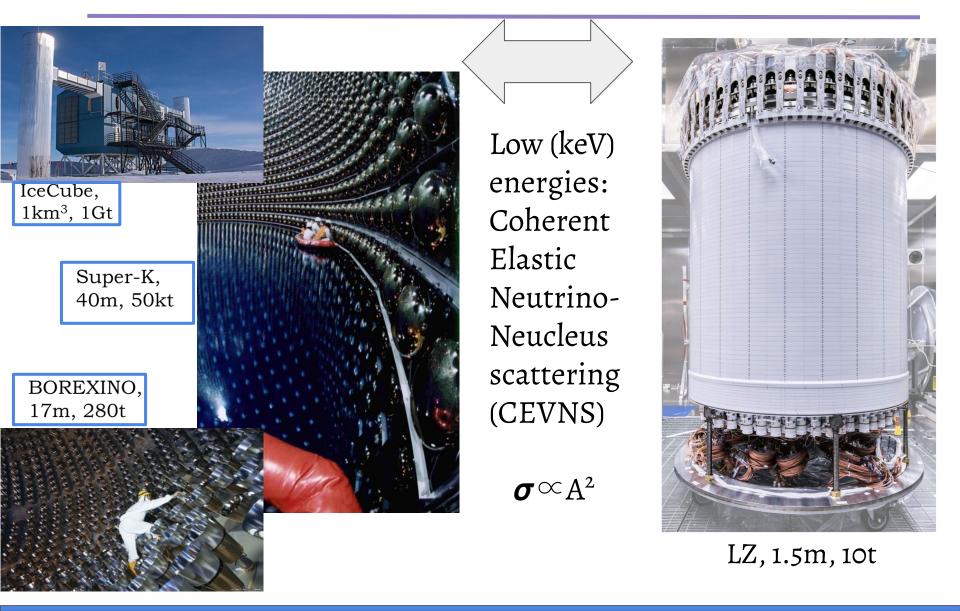
- Projected sensitivity (upper limit) for 200t×y and 1000 t×y exposure
- Will probe entire parameter region for $m\chi \sim 2 \text{ Gev/c}^2$ until ~neutrino floor fog
 - Likelihood analysis
 - 99.98% ER rejection @ 30% NR acceptance



DM Physics: XLZD WIMP Spectroscopy

- Capability to reconstruct the WIMP mass & cross section (SI) for various masses below 500 GeV/c²
 - Possibility to constraint WIMP astrophysical parameters
- Width & length of contours demonstrate Confidence intervals for spin-independent WIMP signals at different masses how well WIMP parameters can be 3×10^{-47} reconstructed in XLZD 2×10^{-4} MIMP-nucleon σ^{SI} [cm²] Exposure: 1000 t×y **Reconstruction:** 10^{-47} $m\chi = 20, 100 \text{ GeV}/c^2$ 6×10^{-48} 4×10^{-48} 3×10^{-1} 10^{1} 10^{2} WIMP mass [GeV/c²]

DM Physics: Solar axions & galactic ALPs


Solar axions

- Axions: hypothetical particles postulated to solve the strong CP problem
 - Does not represent majority of dark matter but Ο well motivated candidates
- ALPs: generalization of the axion concept without addressing the strong CP problem
- Solar axions & ALPs couple to xenon via axio-electric effect (ER) \rightarrow Ionize a xenon atom
- Expect mono-energetic peak at axion mass
- Sensitivity to solar axions
 - ~ X10 improvement relative to Xenon100 Ο
- Sensitivity to galactic ALPs
 - ~X100 improvement relative to XENON100 Ο

$$^{\circ}$$
 $g_{Ae}^{
m solar} \propto (MT)^{-1/8}$
 $g_{Ae}^{
m ALP} \propto (MT)^{-1/4}$

LXe Experiments can also go Neutrino, for free!!!

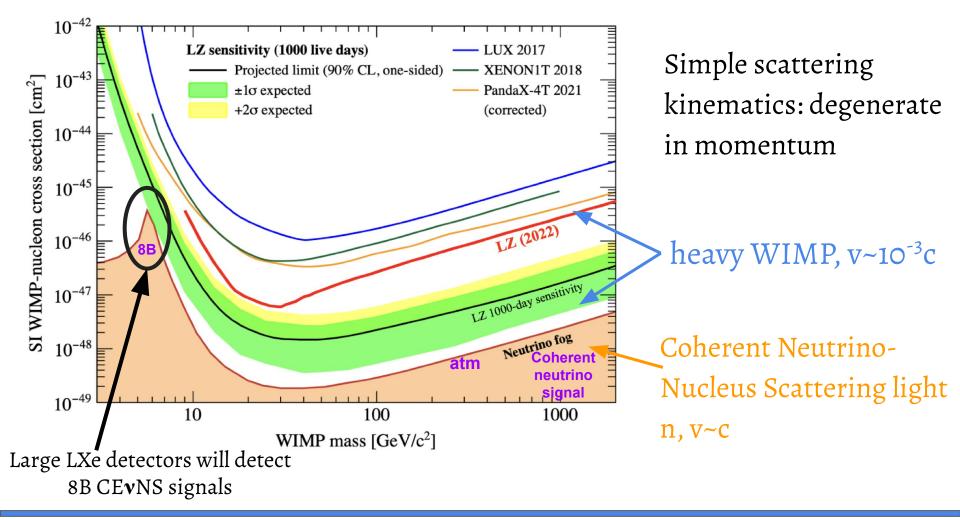
LXe Experiments can also go Neutrino!!!

Coherent Elastic Scattering

For both **WIMPs** & solar/supernova **v**

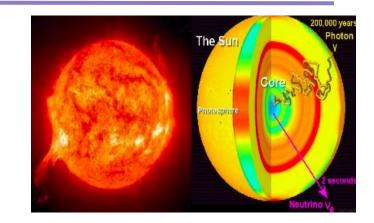
$$\frac{\lambda_{\rm deBroglie}}{2\pi} = \frac{\hbar}{p} \sim \frac{197 {\rm MeV~fm}}{100 {\rm GeV~10^{-3}c}} \sim \frac{197 {\rm MeV~fm}}{10 {\rm MeV}} > r_{\rm nucleus}$$

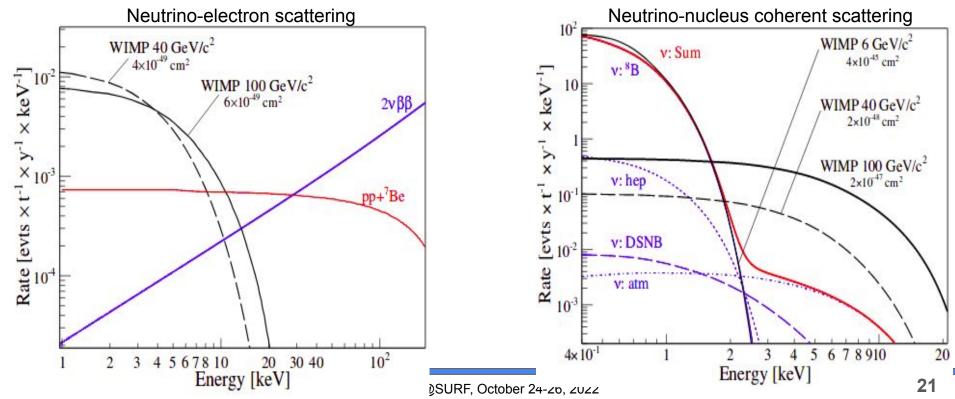
 \rightarrow interact with entire nucleus: σ° A²


Recoil degenerate in transferred momentum *p*

→ for some parameter space, WIMPs and neutrinos indistinguishable: "neutrino fog"

LXe Experiments can also go Neutrino!!!


Coherent Elastic Scattering


 $\chi/\nu + Xe \longrightarrow \chi/\nu + Xe$

v Physics: Low Energy solar neutrinos

- Low E solar neutrinos, **pp** & 7Be, **8B**, CNO
 - Vast majority of solar neutrinos, help to understand & improve solar models (eg solar metallicity & luminosity)
 - Very low energetic, hard to detect
- Prominent backgrounds for WIMP searches
 - Neutrino-electron scattering (ER channel)
 - **Neutrino nucleus coherent scattering** (NR channel)

v Physics: Neutrinoless double beta decay

<u>Sensitivity to Xe-136 ovbb half life vs exposure</u> $1 \cdot 10^{28}$ Monoenergetic single event site at Q value *nEXO Sensitivity limit, 90% CL [yr] $6 \cdot 10^{27}$ of the decay neutrino dominated Q = 2457.83 keV 760.493 keV XLZD: next generaterion Measured half life not cross-section $4 \cdot 10^{27}$ Dark Matter observatory 8.497 keV (40t LXe TPC, no enrichment) +NEXT-HD Motivation: $2 \cdot 10^{27}$ aseline \Rightarrow Discovery of Majorana particles $1 \cdot 10^{27}$ Discovery of lepton number violation \Rightarrow PandaX-III Discovery of violation of conservation of net \Rightarrow 6 · 10²⁶ Kaml AND2-Zen difference between lepton number and baryon number $4 \cdot 10^{26}$ 2 10 12 Exposure time [yr] Current best limits set by EXO-200 & 10^{-1} global sensitivity KamLAND-Zen using ~100's kg of Xe-136 INVERTED ORDERING No Xe-136 enrichment needed for G3 LXe to set baseline $\langle m_{\beta\beta}\rangle [eV]$ neutrino dominated competitive limit to ovbb future ton-scale 10^{-2} experiments Xe-136 abundance in natural xenon : 8.9% NORMAL ORDERING \rightarrow XLZD 40 tons of Xe has 3.6 tons of Xe-136 10^{-3} Sensitivity: $T_{1/2} = 5.6 \times 10^{26}$ year with $\sigma/E \sim 1\%$ at Q_{BB} 10^{-4} 10^{-1} 10^{-3} 10^{-2} 10^{0}

potentially probe entire inverted hierarchy

Lightest v mass [eV]

[arxiv:2003.13407]

@SURF, October 24-26, 2022

Conclusion: Take home messages

- LXe TPCs have led high mass WIMP searches since 2007 and have consistently delivered on design sensitivity (e.g. LZ)
- Leading experiments in the dark matter field (LZ & XENONnT /DARWIN) which utilizes this technology joined forces to build the next generation (G3) of dark matter detector.
- LZ & XENONnT/DARWIN are actively working together on central questions for this new detector which will **address numerous scientific questions** in addition to probing dark matter nature.
- From our early design studies we are confident that a 20m cavity is suitable for a G3 experiment such as XLZD. This suggests new space at SURF will be needed.
 We are confident that the cosmic ray shielding and environmental backgrounds of the 4850 L meet the background requirements for a LXe G3 experiment.