⁴²Ar Background in nEXO

Venkatesh Veeraraghavan^{1, 2, a)} and Andreas Piepke¹

¹⁾Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA ²⁾Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

^{a)}Corresponding author: vveeraraghavan@ua.edu

Abstract. The next-generation Enriched Xenon Observatory (nEXO) is a planned experiment utilizing 5 tonnes of isotopicallyenriched liquid xenon (LXe) and a time projection chamber (TPC) to search for neutrinoless double beta decay of 136 Xe. The large, monolithic design of the nEXO TPC provides excellent shielding from the dominant background source - γ rays that originate from external materials. With an exceptionally clean central region of the TPC, we need to consider and quantify backgrounds that have previously been considered to be small relative to backgrounds from aforementioned γ rays or not considered at all. A case in the latter category is 42 Ar contamination in LXe. We will present the quantitative study of this 42 Ar background for nEXO.

INTRODUCTION

The next-generation Enriched Xenon Observatory (nEXO) experiment intends to search for neutrinoless double beta $(0\nu\beta\beta)$ decay of ¹³⁶Xe. The central part of the nEXO detector is a time projection chamber (TPC) filled with liquid xenon (LXe) that is enriched to 90% in the nuclide of interest, ¹³⁶Xe. Five tonnes of LXe are to be used in the nEXO detector. The Q value for ¹³⁶Xe double- β decay, $Q_{\beta\beta}$, is 2458 keV [1, 2].

The different categories of background in nEXO are intrinsic radioactivity, steady-state ²²²Rn in LXe, and exposurebased backgrounds, see Fig. 1 [3]. In the intrinsic radioactivity category, a new component was added in Ref. [3] compared to previous estimates: ⁴²Ar present in LXe. The focus of this presentation is the study of the aforementioned background component. The relevancy of this background for the nEXO experiment, the study of this background, and its contribution to the overall background budget will be discussed.

The number of single-site background events in the inner two tonnes of nEXO, in the energy interval $Q_{\beta\beta}\pm$ FWHM/2 (2428-2488 keV), for one year of data taking is estimated at 0.5. Given the small expected background count, it is imperative to consider backgrounds that might be second or even third order. This consideration is especially crucial in the case of a background that resides in the very central region of the nEXO TPC such as the ⁴²Ar present in LXe.

RELEVANCE AND STUDY OF ⁴²Ar BACKGROUND FOR nEXO

Xenon is produced as a by-product of oxygen removal from air. The natural xenon thus obtained is then enriched to the xenon nuclide that is of interest (¹³⁶Xe) using centrifugal separation methods. The presence of argon in air implies that ¹³⁶Xe is produced with trace amounts of argon contained in it. This noble gas radioactivity is a concern to nEXO experiment. The argon isotopes that are relevant to the $0\nu\beta\beta$ search in nEXO are those that by themselves or via their daughters are long-lived enough to survive from procurement of xenon to the start of operations underground and have energy deposits that overlap with the FWHM energy window that is relevant to the nEXO experiment. Among argon isotopes, only ⁴²Ar qualifies for aforementioned conditions. The relevance of ⁴²Ar to the nEXO experiment can be seen from its decay chain,

$${}^{42}_{18} \text{Ar} \xrightarrow{100\% \ \beta^-}_{T_{1/2} = 32.9 \ \text{y}} {}^{42}_{19} \text{K} \xrightarrow{100\% \ \beta^-}_{T_{1/2} = 12.4 \ \text{h}} {}^{42}_{20} \text{Ca (stable)}.$$

The end-point energy of the ⁴²Ar β -decay is at 599 keV [4] and therefore, by itself, ⁴²Ar is not a background for $0\nu\beta\beta$ search in nEXO. ⁴²K undergoes β -decay to ⁴²Ca with an end-point energy of 3525 keV [4]. A γ -ray with energy of 2424.3 keV (unresolved with the FWHM energy window) is coincident for 0.02% of the ⁴²K β -decays [4]. This coincident γ -ray has potential to be a background event for β -decays happening farther from the central region of the TPC. Thus, the decay of ⁴²K is a relevant source of background for nEXO.

To estimate the ⁴²K background for nEXO, we need to know the ⁴²Ar content in enriched xenon. Then, we use nEXO detector design information to determine the background rate from ⁴²K decays. Among the ⁴²K born in the nEXO detector, some fraction are ionic and migrate to biased surfaces. We model the distribution of ⁴²K in the detector

FIGURE 1. Single-site-like fractional background contributions with energy within $Q_{\beta\beta} \pm \text{FWHM/2}$ and in the inner 2000 kg of nEXO detector [3].

and do simulation studies. The xenon is continually circulated and purified. The purification process can eliminate some of the 42 K from xenon. We model the circulation rate and the effect of the purifier to remove 42 K atoms from xenon. All these aforementioned steps are presented in the following sections to determine the background count from 42 K decays in the nEXO detector.

⁴²Ar CONTENT OF ENRICHED XENON

Many experiments have measured the relative content of 42 Ar in argon [5, 6, 7, 8, 9]. Since the natural abundance of 40 Ar isotope in argon is 99.6%, 40 Ar and natural argon are used interchangeably. These measurements were done from 1998 to 2019. The values reported in the literature are listed in Tab. I and range from 40 to 168 μ Bq/kg. These measurements provide an estimate of 42 Ar in natural argon.

Experiment	Year	Relative abundance of ⁴² Ar in ⁴⁰ Ar		
Experiment		atoms/atom (10^{-21})	Specific activity (µBq/kg)	
DBA [5]	1998	< 6 (90% C.L.)	< 60 (90% C.L.)	
DBA [6]	2003	< 4.3 (90% C.L.)	< 43 (90% C.L.)	
GERDA [8]	2014	$9.1^{+0.8}_{-2.0}$ to $16.8^{+2.2}_{-1.8}$	91^{+8}_{-20} to 168^{+22}_{-18}	
DBA [7]	2016	$9.2^{+2.2}_{-4.6}$	92^{+22}_{-46}	
DEAP [9]	2019	4.04 ± 0.59	40.4 ± 5.9	

TABLE I. Measurements of relative abundance of ⁴²Ar in ⁴⁰Ar.

The EXO-200 collaboration measured the purity of their enriched xenon and reported the argon content to be $(7.6\pm1.8)\times10^{-9}$ g/g [10]. Using atomic masses of 40 Ar and 136 Xe, the aforementioned measurement can be translated as 26 to 32 40 Ar atoms among 10⁹ enriched xenon atoms. The lower end of the range corresponds to the central value of measurement while the higher end corresponds to the central value plus 1 σ uncertainty.

Besides one consideration, we can combine the aforementioned 42 Ar content in natural argon and the argon content in enriched xenon to obtain the 42 Ar content in enriched xenon. The consideration is that the centrifugal separation

method is more efficient in removing lighter isotopes than heavier ones. Although ⁴⁰Ar is likely removed at a higher rate than ⁴²Ar, we are uncertain about their relative removal rates. Given that nEXO expects the heaviest xenon isotope (¹³⁶Xe) to be enriched to 90%, we assume a separation rate for ⁴²Ar relative to ⁴⁰Ar to be in the range of 1 to 9. Combining values for ⁴²Ar in natural argon (91-190 μ Bq/kg), argon content in enriched xenon (7.6 to 9.4 × 10⁻⁹ g/g), and the ease of removing ⁴⁰Ar relative to ⁴²Ar (a factor of 1 to 9), the specific activity of ⁴²Ar in enriched xenon is derived to be in the range of 0.7 to 16.1 pBq/kg. For a total LXe mass of 5000 kg in nEXO, the number of ⁴²Ar atoms is evaluated to be 5 to 119.

MODELING OF ⁴²K BACKGROUND IN nEXO

We begin with 42 Ar that is uniformly distributed in LXe and decays to 42 K. The differential equation for the rate of change of 42 K is

$$\frac{\mathrm{d}N_K(t)}{\mathrm{d}t} = \frac{N_A(t)}{\tau_A} - \frac{N_K(t)}{\tau_K} - N_K(t) \times (\frac{f}{V}) \times \varepsilon.$$
(1)

 $N_K(t)$ is the number of 42 K atoms present in LXe at time t, $N_A(t)$ is the number of 42 Ar atoms present in LXe at time t, τ_A is the mean lifetime of 42 Ar, τ_K is the mean lifetime of 42 K, f/V is the fractional volume of xenon that encounters the purifier per unit time, and ε is efficiency of purifier to remove 42 K during recirculation. The first term is the creation of 42 K atoms from 42 Ar decays, the second term is the decay of 42 K, and the third term describes the interaction of 42 K with the purifier. The current representative xenon recirculation period is four days, f/V = 1/96 hour ${}^{-1}$. We do not have any estimates for ε . The derivation of number of 42 K decays in LXe is adapted from the mathematical treatment in Ref. [11]. The number of 42 K decays in 1 year is derived to be,

$$N_{K}^{1 \text{ year}} = \frac{\mathscr{A}_{A}(0) \times M_{LXe} \times \tau_{A} \times 0.0208}{1 + \tau_{K} \times \frac{f}{U} \times \varepsilon},$$
(2)

where $\mathscr{A}_A(0)$ is the ⁴²Ar specific activity at t = 0, M_{LXe} is the mass of LXe contained in nEXO.

When ⁴²Ar decays, some fraction of the ⁴²K atoms is electrically neutral with the remainder being ionic. The fraction of ionic ⁴²K is not known via an independent measurement and is assumed to be equal to 0.764, the ionic fraction of ²¹⁴Bi from ²¹⁴Pb β -decay [12]. During the decay of ⁴²Ar, ⁴²K is uniformly produced in LXe. At production, ⁴²K atoms are distributed in active LXe and in inactive LXe per the relative masses of LXe in each region. In active LXe, neutral ⁴²K are uniformly distributed in LXe, while ionic ⁴²K drift to the cathode. Given the large difference in the half-life of ⁴²K and the drift time needed for ionic ⁴²K to drift to the cathode, a negligible fraction of ionic ⁴²K decay in active LXe. In other words, all ionic ⁴²K produced drift to the cathode and decay attached to the cathode.

Since the fraction of ionic 42 K is not known from direct observation, a conservative approach is to assume the fraction to be that which yields the largest background count. Since β -decays are highly localized, decays in active LXe are more probable to result in background events in the inner two tonnes than decays on the cathode. In this approach, the fraction of ions of 42 K is 0.0 and all 42 K atoms that are born in the active LXe decay uniformly in the active LXe.

We did simulations for ⁴²K in active LXe, inactive LXe and on the cathode. The energy spectrum of electrons from ⁴²K β -decays to the ground state of ⁴²Ca is "unique first-forbidden". We also confirmed that all γ s coincident with the β -decay were properly simulated. Single-site (SS) and multi-site (MS) hit efficiencies for reconstructing ⁴²K disintegrations in the FWHM energy window and in the inner two tonnes of the TPC are listed in Tab. II. The SS efficiency for ⁴²K decays in inactive LXe and on the cathode can be ignored relative to the efficiency in the active region.

RESULTS

Based on simulation studies, we consider 42 K decays in active LXe to be the only relevant contributor. The number of background counts from 42 K decays in the inner two tonnes of nEXO for 1 year is shown in Fig. 2. In Fig. 2, we assume the ionic fraction of 42 K to be 0.76 and relative mass separation between 40 Ar and 42 Ar to be 9. Circulation

TABLE II. Efficiency for reconstructing 42 K disintegrations in FWHM energy window in the inner two tonnes. Numbers in parenthesis are statistical uncertainties expressed as a percentage.

	nEXO part	Efficiency (10^{-3})		
	nEXO part	SS	MS	
	Active LXe	6.0 (0.4%)	2.2 (0.7%)	
	Cathode	$7 \times 10^{-5} (38\%)$	$6.8 imes 10^{-4} (12\%)$	
	Inactive LXe	$6 \times 10^{-5} (41\%)$	$4.1 imes 10^{-4} (16\%)$	

time periods ranging from 1 to 6 days are considered while the efficiency of the purifier to remove ⁴²K atoms is shown in the x-axis. For the case of high recirculation time periods (much larger than τ_K) or the case of $\varepsilon = 0.0$, we expect 2.6×10^{-3} background events from ⁴²K in 1 year.

FIGURE 2. Number of background counts from 42 K in the inner two tonnes in 1 year for a range of xenon recirculation periods and as a function of the purifier efficiency to remove 42 K.

This study to evaluate the background contribution from ⁴²Ar present in LXe has a number of variable dependencies such as ε , f/V, the fraction of ionic ⁴²K, and ease for separation of ⁴⁰Ar relative to ⁴²Ar during the centrifugal process. We consider both extreme values of each dependency that would minimize and maximize the background. To that end, Tab. III lists background counts for every permutation of either extremes of each dependency. It is noted that the background count from ⁴²Ar present in LXe in the inner two tonnes in one year ranges from 7×10^{-5} to 1.1×10^{-2} .

SUMMARY

A central task of nEXO is to identify, study, and quantify backgrounds that are relevant to the experiment. We presented the background from ⁴²Ar in LXe. A similar analysis was done with the full EXO-200 dataset [11] and adapted to the nEXO experiment. Background from ⁴²Ar in the inner two tonnes of nEXO has been evaluated to be at most 2% of that from all other sources. At this scale, ⁴²Ar present in LXe will not significantly affect the sensitivity of nEXO experiment to observe $0\nu\beta\beta$ decay of ¹³⁶Xe.

TABLE III. Number of background counts from ⁴²K disintegrations in the energy interval $Q_{\beta\beta}\pm$ FWHM/2 and in the inner two tonnes in one year for extreme values of various dependencies. The dependencies are ε , f/V, fraction of ionic ⁴²K ($f_{42}K^+$), and ease for separation of ⁴⁰Ar relative to ⁴²Ar during the centrifugal process. The last column expresses background counts from ⁴²K as a fraction of the total nEXO background as evaluated in Ref. [3]. In the last row, the scenario with the lowest background count is rewritten using the lower end of range of ⁴²Ar specific activity in enriched xenon.

e	f/V	$f_{^{42}K^+}$	Relative mass	N ¹ year	f_{BKG}
c	(day^{-1})		separation $\left(\frac{^{40}\text{Ar}}{^{42}\text{Ar}}\right)$	¹ vbkg	(%)
	1-4	0.76	9.0	2.6×10^{-3}	0.52
00			1.0	2.9×10^{-4}	0.06
0.0		0.0	9.0	1.1×10^{-2}	2.2
			1.0	1.22×10^{-3}	0.24
		0.76	9.0	1.49×10^{-3}	0.30
	1		1.0	$1.65 imes 10^{-4}$	0.03
	1	0.0	9.0	6.31×10^{-3}	1.26
1.0			1.0	7×10^{-4}	0.14
1.0	4	0.76	9.0	2.2×10^{-3}	0.44
			1.0	2.4×10^{-4}	0.05
		0.0	9.0	9.3×10^{-3}	1.86
			1.0	1.03×10^{-3}	0.21
1.0	1	0.76	1	7×10^{-5}	0.014

ACKNOWLEDGEMENTS

This work was conceived as a contribution to the development of the nEXO experiment. The authors acknowledge the use of nEXO collaboration computing resources and software for the detector modelling discussed in this paper. We thank our nEXO colleagues for their support. This research was supported in part by the U.S. Department of Energy under DOE Grant DE-FG02-01ER41166.

REFERENCES

- M. Redshaw, E. Wingfield, J. McDaniel, and E. G. Myers, "Mass and double-beta-decay Q value of ¹³⁶Xe," Phys. Rev. Lett. 98, 053003 (2007).
- 2. P. M. McCowan and R. C. Barber, "Q value for the double- β decay of ¹³⁶Xe," Phys. Rev. C 82, 024603 (2010).
- G. Adhikari *et al.* (nEXO Collaboration), "nEXO: neutrinoless double beta decay search beyond 10²⁸ year half-life sensitivity," J. Phys. G: Nucl. Part. Phys. 49, 015104 (2021), arXiv:2106.16243v2 [nucl-ex].
- 4. "National Nuclear Data Center, information extracted from the NuDat database," https://www.nndc.bnl.gov/nudat/ (2022/12/09).
- V. D. Ashitkov, A. S. Barabash, S. G. Belogurov, S. I. Konovalov, R. R. Saakian, V. N. Stekhanov, V. I. Umatov, G. Carugno, G. Puglierin, and F. Massera, "Double beta decay of Mo-100," Part. Nucl. Lett. 106, 69–73 (2001).
- V. D. Ashitkov, A. S. Barabash, S. G. Belogurov, G. Carugno, S. I. Konovalov, F. Massera, G. Puglierin, R. R. Saakyan, V. N. Stekhanov, and V. I. Umatov, "Liquid argon ionization detector for double beta decay studies," (2003), arXiv:nucl-ex/0309001.
- 7. A. S. Barabash, R. R. Saakyan, and V. I. Umatov, "On concentration of ⁴²Ar in liquid argon," J. Phys. Conf. Ser. 718, 062004 (2016).
- 8. M. Agostini *et al.* (GERDA Collaboration), "The background in the $0\nu\beta\beta$ experiment GERDA," Eur. Phys. J. C 74, 2764 (2014), arXiv:1306.5084 [physics.ins-det].
- R. Ajaj et al. (DEAP Collaboration), "Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector," Phys. Rev. D 100, 072009 (2019), arXiv:1905.05811 [nucl-ex].
- A. Dobi et al. (EXO-200 Collaboration), "Xenon purity analysis for EXO-200 via mass spectrometry," Nucl. Instrum. Meth. A 675, 40–46 (2012), arXiv:1109.1046 [physics.ins-det].
- M. Hughes, Search for Neutrinoless Double-beta Decay and ⁴²Ar in Enriched Xenon Using the EXO-200 Dataset, Ph.D. thesis, University of Alabama (2020).
- J. B. Albert *et al.* (EXO-200 Collaboration), "Measurements of the ion fraction and mobility of α- and β-decay products in liquid xenon using the EXO-200 detector," Phys. Rev. C 92, 045504 (2015), arXiv:1506.00317 [nucl-ex].