

Impact of environmental and materials radioactive contamination in superconducting quantum bits

Giulia D'Imperio for the DEMETRA and SQMS collaborations

15/06/2022 LRT workshop **South Dakota Mines**

Qubits

- Unit of quantum information
- Superposition of IO> and I1> states of a two-level quantum system
- n entangled qubits $\rightarrow 2^n$ possible states

Ideal Features:

Low

Radioactivity Techniques

- Strongly coupled to other qubits entanglement 1.
- 2. Decoupled from the world \rightarrow quantum coherence

Any two-level QM system can be used as a qubit:

Trapped lons

•••

Photons (lasers)

Superconducting circuits

Superconducting qubits

A superconductive circuit with a non-linear inductance (Josephson junction) can be used as a qubit

https://arxiv.org/pdf/1904.06560.pdf

Scalable (reached up to 100 qubits: Sycamore, Aspen-9, Zu Chongzhi,

Several effects can limit the affected by two-level system noise affected by quasiparticles (QP)

Coherence

- The longer the better
- Coherence time >> gate operation time
- Goal: millisecond scale and beyond \rightarrow present status ~10-100 μ s

Original plot (up to 2012): [M.H. Devoret & R.J. Schoelkopf, Science 339, 1169 (2013)] Extension (up to 2015): [M. Reagor, PhD thesis (Yale)]

Quasiparticles

Superconductors: electrons bound into Cooper pairs (no dissipation)

- Many mechanisms can break Cooper pairs into quasiparticles ($\Delta_0 \sim 0.1$ meV)
- **Quasiparticles** are **dissipative** (in contrast to Cooper pairs)
- Sources: any energy dissipation
 - Infrared radiation Ο
 - Thermal stress Ο
 - Ο

Recent experimental results

- 1. Radioactivity will be (or already is) the **ultimate limit the coherence of qubits** [mainly MIT and PNNL]: Vepsäläinen et al, Nature (2020).
- 2. Radioactivity limits quantum error correction in a matrix of qubits [mainly Wisconsin Univ., INFN-Roma, Fermilab, Google]: Wilen et al, Nature (2021), McEwen et al., Nature Physics (2022)
- 3. Suppressing radioactivity improves the performance of quantum circuits [mainly INFN-Roma and LNGS, KIT]: Cardani et al, Nature Communications (2020), Gusenkova et al., Appl. Phys. Lett. 120, 054001 (2022)

Radioactivity vs qubits

- **Direct interaction** in the qubit unlikely (qubit dimension < 100 μ m)
- Indirect interaction: radioactivity deposits energy in substrate (typically ~cm²) area x 300 µm thickness), **O(100) keV energy** deposits
- **Charges** and **phonons** are produced and diffuse in the substrate
- Phonons break Cooper pairs and produce quasiparticles (QP)

Quantum error correction

- Most popular idea for quantum error correction: encode quantum information in a matrix of qubits
- Key assumption: errors across the qubits belonging to this matrix are **uncorrelated in space and time**
- Radioactivity in the substrate can simultaneously affect more qubits

Resonators in underground setup

- (KIDs)
- 1.2 cm² x 330 μ m thick sapphire substrate
 - QP burst \rightarrow shift in frequency of resonators, quality factor "Q" decreases with QP burst rate

Cardani et al., Nature Communications 2021

- Measured in 3 setups:
 - "Standard" Karlsruhe (K) Ο
 - **Underground** setup at Gran Sasso + 10cm lead **shielding** (G) Ο
 - Crosscheck above ground in Roma (R) Ο
- Rate of QP bursts reduced by factor ~30 from 70
 - \rightarrow 2.5 mHz in G
- Quality factor improved up to factor 2-3 in G

3 high kinetic inductance superconducting **resonators**

Qubits (fluxonium) in underground setup

- Readout line at LNGS recently upgraded
- Measurements of fluxonium qubit instead of resonators

Large improvement of frequency stability

Soon measurements with more performing fluxonium and transmon qubits

Appl. Phys. Lett. 120, 054001 (2022)

Round Robin

- Rigetti Round Robin qubit for SQMS center
- 325 μ m-thick, 11.9×7 mm² silicon wafer hosting 16 transmon qubits
- Will be measured in multiple facilities: Boulder, Fermilab, Rigetti and LNGS (underground)

Giulia D'Imperio - LRT 15/06/2022

Monte Carlo simulations

Geant-4 based simulation, using the following inputs:

- geometry of the chip + setup: box, holder, shieldings, cryostat
- flux of μ , γ , neutrons (measurements + literature)
- radioactivity of setup materials (measurements @LNGS HPGe facility)

Simulations are an important tool to

predict the impact of radioactivity in a given setup find the elements that have the most important contributions optimize geometry, set up cleaning protocols, etc... to minimize the rate

Radioactivity measurements

Radioactivity measurements of "external sources"

- Gammas \rightarrow measurements with Nal(TI) detector in several laboratories, above ground and underground
- **Neutrons** \rightarrow measurements with DIAMON spectrometer (**negligible underground**)
- Muons → literature [IJMP A Vol. 33, No. 30, (2018)], negligible underground

Radioactivity measurements

Radioactivity of the materials "close" to the chip:

• all materials of the setup have been measured with HPGe @LNGS (M. Laubenstein & L. Pagnanini)

Co	Component		²³⁸ U	²³⁵ U	⁴⁰ K	⁶⁰ Co
		[mBq/kg]	[mBq/kg]	[mBq/kg]	[mBq/kg]	[mBq/kg]
COPPER FINGER	A	< 1.5	< 25	< 4	< 9	(0.6 ± 0.3)
MAGNETIC SHIELD	В	< 8.4	< 8.3	< 8.4	< 35	< 3.7
SINGLE-JUNCT CIRCULATORS	С	< 190	< 330	< 410	< 2000	< 50
DUAL-JUNCT CIRCULATORS	D	< 240	< 380	< 380	< 2600	< 70
TRIPLE-JUNCT CIRCULATORS	E	< 0.19	< 0.24	< 0.22	< 2.0	< 0.04
ATTENUATORS	F	< 52	< 2100	< 69	< 200	< 6
SMA CONNECTORS	G	< 48	(1800 ± 600)	(70 ± 30)	(240 ± 90)	(51 ± 8)
COPPER COAX CABLES	H	(54 ± 12)	(1500 ± 400)	(34 ± 17)	(740 ± 130)	< 5
NbTi COAX CABLE	Ι	< 750	< 1000	< 380	< 7000	< 230
RADIALL SWITCH	J	measurements in progress				
CRYO AMPLIFIER	K	< 890	< 12000	< 850	< 10000	< 260
CuBe CABLES	L	(240 ± 40)	(8000 ± 3000)	(350 ± 90)	< 500	< 31

Simulated energy deposits

- Output of Geant-4 simulations position of "hits" and energy deposits in the silicon chip (x,y,z,dE)
- Different particles leave different "tracks" in the chip and deposit different amount of energy

Muons

Gammas

MC results for Round Robin

Expected rate from muons in the silicon chip: 5 mHz (avg 140 keV)

Expected rate from gammas in the silicon chip: 6 mHz (avg 70 keV)

Expected rate from **neutrons** in the silicon chip: 0.15 mHz (avg 150 keV)

• Expected rate from **close sources** in the silicon chip: 0.03 mHz (avg 150 keV)

Strategies for reducing radioactivity impact

Low radioactivity:

- underground laboratory, shieldings Ο
- improve radiopurity of setup materials, cleaning surfaces, ... Ο

Novel chip design

Low

Radioactivity Techniques

- phonon traps in the substrate (F. Henriques et al. Appl. Phys. Lett. 2019, J. Ο Martinis npj Quantum Information 2021)
- decouple chips as much as possible from common substrate (J. Orrell and Ο B. Loer Phys. Rev. Appl. 2021, activities of P. For Diaz at Canfranc, ...)

Conclusions

- Radioactivity will be the ultimate limit for coherence of qubits
- Severely affects quantum error correction correlated noise
- Evidence that suppressing radioactivity improves the qubits
- At LNGS underground laboratories we will measure qubits in an extremely **radiopure environments** \rightarrow help us to understand better the impact on qubit performance

Since 2018: a lot of progress, new bridges between communities

- **Astro-particle physics** has knowledge/expertise that would significantly advance the comprehension and performance of these devices
- **Particle physicists** are getting excited: quantum sensing to search for dark photons, axions, ... but also technological breakthroughs for other applications

Simulations on a 4-qubits array

- 1. Energy deposits in Si chip:
 - a. **Muons** (blue): 0.5 mHz ~500 keV in substrate
 - b. Gammas from lab (red): 8 mHz
 ~100 keV in substrate
- 2. Creation of **e/h pairs** (3.8 eV each \rightarrow 10⁴)
- 3. Charges diffuse creating **phonons**

Wilen et al, Nature (2021)

20

Experimental results: correlated errors

- 1. Ramsey tomography on 4 qubits $(Q1-Q2 \Delta L = 640 \mu m, Q3-Q4 \Delta L = 320 \mu m)$
 - → Many simultaneous charge jumps in pairs
 - **54%** correlation prob for ΔL = **320** μm Ο
 - **46%** correlation prob for ΔL = **640** μm Ο
 - **no correlation** for **ΔL= 3 mm** Ο
 - 2. Separate measurement:

\α.

low

Radioactivity Techniques

- Q1 trigger for charge event
- measure Q2-Q4 state (ΔL=3 mm) → simultaneous change
- relaxation time ~130 µs compatible with **phonons** diffusion in the chip

Footprints of charges are <mm scale, phonons diffuse to all the chip size (~cm)

Offset charge (e)

0

а