

Low radioactivity argon for rare event searches

Sagar Sharma Poudel

Low Radioactivity Technique (LRT) workshop 2022

PNNL is operated by Battelle for the U.S. Department of Energy

Sagar, LRT2022

Talk outline

- Argon as a detector medium in rare event searches
- Decay backgrounds from radioactive isotopes of argon 39Ar and 42K
- Estimate of 42Ar production underground
- Underground argon and associated challenges
- Feasibility and reach of kton scale underground detector

Argon as a target material for rare event searches

- Liquid argon is an excellent scintillator.
- Pulse Shape Discrimination (PSD) of the event signals (e.g electronic recoil vs nuclear recoil signal)
- Dual phase argon TPC technology allows collection of both scintillation and ionization signal (additional PSD, 3D position reconstruction)
- Scalable (homogeneous detector medium, large radiation attenuation length, large drift time)

Ν NA

Radioactive isotopes of Argon

Pacific	Reaction	Estimated ³⁹ Ar Production rate [atoms/kg/day]	Fraction of total AAr [%]
Northwest National Laboratory	$\frac{{}^{40}\text{Ar}(n, 2n)^{39}\text{Ar} + {}^{40}\text{Ar}(n, d)^{39}\text{Cl}}$	759 ± 122	72.3
Long-lived radioactive isotopes in argon :	40 Ar(μ , n) ³⁹ Cl	172 ± 19	16.4
$00 \text{ Am} (l_{1} \text{ alf } l_{1}^{2} \text{ for } 000 \text{ and } \text{ and } 10 \text{ Am} (000 \text{ and } \text{ and})$		89 ± 19	8.5
39Ar (nait-life: 269 years), 42Ar (32.9 years)	$\frac{{}^{40}\mathrm{Ar}(\gamma,\mathrm{p}){}^{39}\mathrm{Cl}}{10}$	23.8 ± 8.7	2.3
	40 Ar(p, 2p) ³⁹ Cl	< 0.1	< 0.01
	40 Ar(p, pn) ³⁹ Ar	3.6 ± 2.2	0.3
39Ar and 42Ar have similar beta spectrum and	38 Ar(n, γ) 39 Ar	$\ll 0.1 (UAr)$ 1.1 ± 0.3 (AAr)	- 0.1
oor a and +27 a nave sinniar beta spectrum and	Total	1048 ± 126	100
end point energy (Q_{39Ar} = 565 keV, Q_{42Ar} = 599 keV)		Saldanha et al. PhysRevC.10	0.024608
In atmosphere, specific radioactivity:	10 ⁻¹	AAr (LSV UAr (LSV ************************************	Data at 200 V/cm 'Anti-coinc.) Data at 200 V/cm 'Anti-coinc.) (Global Fit)
39Ar ~ 1 Bq per kg of Ar, 42Ar ~ 10 ⁻⁴ Bq per kg of A	× 10 ⁻⁴		(Global Fit)
39Ar and 42Ar in atmosphere are primarily	ots / [ᢦᡙ᠆ᡪᠯᠴ᠆ᢔᡁᠵ
produced by cosmogenic activation on 40Ar.		l l	

• DarkSide-50 demonstrated UAr is significantly depleted of 39Ar (Activity: 0.7 mBq/kg, i.e factor of 1400 x reduction)

10-

1000

Sagar, LRT2022⁴

For most argon-based neutrino experiments, energetic β's and γ's from 42K decays are concerning. Sagar, LRT2022

https://www-nds.iaea.org/

Beta spectrum: 42Ar

0.0025

0.0020

₽^{0.0015} NP_{0.0010}

0.0005

0.0000

4.5E-4

2.5E-4

1.5E-4

2E-4

1E-4 5E-5 0E0

500

4E-4 3.5E-4 3E-4 0

Energy [keV]

42K decay spectrum

42Ar/42K decay backgrounds

42Ar/42K presence in bulk of detector-argon is problematic.

- 42K decay backgrounds to
- SERDA/LEGEND (Ge detector, LAr veto) search of 2039 keV $0v\beta\beta$ 76Ge signal

[Mitigation strategies for LEGEND:

See Björn Lehnert's Talk]

- Low energy neutrino measurements
 (e.g DUNE (Ar detector))
- > Xenon-doped argon-based detector (136Xe 2458 keV $0v\beta\beta$ signal searches)
- 42Ar/42K decays can cause
- Event pile-up and reconstruction issues in multi-ton scale detector like DUNE, DarkSide-20k Sagar, LRT2022

https://arxiv.org/pdf/2107.11462.pdf

Estimate of 42Ar production underground

Sagar Sharma Poudel Ben M. Loer **Richard Saldanha** Henning O. Back Brianne R. Hackett

This work was funded by PNNL Laboratory Directed Research and Development (LDRD) funds under the Nuclear Physics, Particle Physics, Astrophysics, and Cosmology (NPAC) Initiative

42Ar production underground

- 42Ar production underground should be significantly suppressed:
- > 42Ar's "neighbour" isotopes are short-lived.
- 42Ar production from abundant and stable isotopes of K, Ca, possible but limited energetically due to high energy threshold for the nuclear reactions.

42 Ca stable 0.647%	43 Ca stable 0.135%	44 Ca stable 2.086%	⁴⁵Ca 162.7 d	46 Ca stable 0.004%
⁴¹ K	⁴² K	⁴³ K	⁴⁴ K	⁴⁵ K
stable 6.7%	12.36 hr	22.3 hr	22.1 m	17.8 m
⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar
stable	1.83 hr	33 yr	5.4 m	11.87 m
99.603%		?		
39CI	40CI	41CI	42CI	43CI
55.6 m	1.38 m	34 s	6.8 s	3.1 s
³⁸ S	³⁹ S	⁴⁰ S	⁴¹ S	42S
2.84 hr	11.5 s	9 s	2 s	1 s

Credit: Henning O. Back

42Ar production in the continental crust

- Elemental abundances implemented down to 10 ppm level in the simulated crust $(\text{density} = 2.7 \text{ gm/cm}^3)$ [Natural isotopic abundances considered]
- Separate calculations for Radiogenic and Cosmogenic Production

What nuclear processes ?

- \succ Natural radioactivity (42Cl, 43Cl decays)
- \succ Interactions of spont. fission neutrons and (\propto ,n) si neutrons from natural radioactivity decay-chains
- Cosmic ray muon-induced interactions

Recipe for estimating 42Ar production (I)

TALYS-based estimate

Production yield

P = n

Number density of target isotopes in the crust

differential particle flux

production cross-sections

 $n \rightarrow no.$ of target atoms/isotopes per kg of crustal rock $\phi(E) \rightarrow \text{particle flux (number of particles per sq. cm per sec)}$ $\sigma(E) \rightarrow isotope production cross-section$

What "target" isotopes? within $(Z_{Ar} - 4, Z_{Ar} + 4)$, and isotopes of Mn and Fe

What particle projectiles?

(neutron, proton, triton, alpha) of radiogenic and cosmogenic origin

Evaluate above integral for all relevant reactions

All stable and long-lived isotopes

Recipe for estimating 42Ar production (II)

FLUKA-based estimate by recording residual isotopes produced by cosmic ray muon interactions in the crust

Full particle transport through simulated crust

Pacific

Northwest

- Record residual nuclei produced from all cosmic ray muon-induced interactions in the simulated crust
- The elemental abundances implemented down to 10 ppm level (continental crust composition taken from CRC Handbook, 202

	Physics Tools	Purpose
	FLUKA [G. Battistoni et al. Annals of Nuclear Energy 82, (2015)	Generate simulated
	EXPACS T. Sato et al., <i>J Nucl</i> <i>Sci Technol</i> 50 , 913- 923 (2013)	Generate ground [f numbers]
21)	TALYS https://tendl.web.psi. ch/tendl_2019/	Obtain 42 for various
	MUSIC [V.A.Kudryavtsev,Co mput.Phys.Commun. 180 (2009) 339-346]	Obtain co spectra at
	NeuCBOT https://github.com/sh awest/neucbot	Obtain ne continenta

and transport particles through crust

e cosmic ray muon spectra over for validation against MUSIC's flux

2Ar isotope production cross-section s nuclear reaction channels

smic ray muon flux and energy t various crustal depths

eutron yield from (\propto, n) reactions in al crust

Radiogenic Particle flux in the earth's crust

- Neutron yield and neutron energy distribution obtained from NeucBOT for our crustal composition
- Given the abundance of light elements like
 O, Mg, Al and Si in the crust,
 (∝, n) neutron flux is significant
- Radiogenic neutron flux number is very sensitive to assumed concentration of U and Th in the crust.

Upper continental crust Th content = 1.05×10^{-5} g/g U content = 2.7×10^{-6} g/g (O. Shramek et al. / Geochimica et Cosmochimica Acta 196 (2017) 370–387)

• At 500 mwe, cosmogenic neutron flux is two orders of magnitude smaller than radiogenic neutron flux.

Cosmogenic Particle flux in the earth's crust

Input muon spectra and flux : MUSIC-given for a standard rock

Depth Muon flu (standar 2.07×10^{-10} 500 mwe 3.09×10^{-3} 3000 mwe

number comparable to the cosmogenic neutron flux at Gran Sasso [However, cosmogenic neutron flux depends strongly on muon flux and composition]

ıx	Cosmogenic neutron	flux
d rock)	(neutrons per sq.	$^{\rm cm}$
,	per sec) in the contine crust	ental
)-5	5.26×10^{-7}	
)-8	2.02×10^{-9}	

Radiogenic production of 42Ar in the earth's crust

42Ar production in the earth's crust (Radiogenic production)

42Ar production from one step (radiogenic) neutron and alpha-induced nuclear reactions on stable isotopes highly unlikely: > 10 MeV energy thresholds

Sagar, LRT2022

*** 40Ar concentration 3 ppm assumed

Henning O. Back

Cosmogenic production of 42Ar in the earth's crust

16

- Cross-sections within few orders of magnitude and similar thresholds for these reactions
- Highest 42Ar-yielding nuclear reaction largely determined by the abundance of the target isotope

42Ar production in the earth's crust (Cosmogenic production)

Pacific Northwest

At 3 kmwe TALYS-based 42Ar estimate from selected reactions

: **2.5 x 10**⁻⁴ 42Ar atoms per ton of crust per year

42Ar estimate from residual isotope recording : **3 x 10**-3 42Ar atoms per ton of crust per year

Nuclear reactions	% contribution
	$ ^{42}$ Ar production
44 Ca(n,3He) 42 Ar	15 %
44 Ca(H*,X) 42 Ar	12 %
$^{44}\mathrm{Ca}(\mu^-,\!\mathrm{2p})^{42}\mathrm{Ar}$	5 %
48 Ca(H*,X) 42 Ar	7 %
$^{48} ext{Ca}(\pi^-, ext{X})^{42} ext{Ar}$	5 %
$^{48}\text{Ti}(\text{H*,X})^{42}\text{Ar}$	5 % H* -> heav
$^{50}{ m Ti}({ m H}^*,{ m X})^{42}{ m Ar}$	7 % X -> produ
56 Fe(H*,X) 42 Ar	12 %

- In the earth's crust, cosmogenic production of 42Ar may dominate up to large crustal depths.
- At 3 kmwe depth, ~ 3 x 10⁻³ 42Ar atoms per ton of crust per year

Sagar, LRT2022

**Very sensitive to the Ca content assumed

42Ar in the underground argon (I)

Should be tiny but difficult to estimate

➢Argon: Crustal or mantle origin ?

> Argon diffusion in rocks ? (Geological time scale of diffusion vs 42Ar half-life)

>At > 12 kmwe depth, muon flux and shape unknown (neutrino-induced muons) become important)

Northwest

Pacific

42Ar in the underground argon (II) For an isolated argon-containing gas pocket in the earth's crust

Dominant production channels 40 Ar(t,p) 42 Ar ${}^{40}{\rm Ar(t,p)}{}^{42}{\rm Ar}$

Feasibility of a kiloton scale underground argon detector

Underground argon

- Known source of underground argon:
 - : CO₂ gas wells in SW Colorado,
 - : Argon concentration: 400 ppm
 - : ~ 300 kg/day

DarkSide projects: URANIA – extraction of UAr ARIA – purification of UAr

: Will provide UAr for DarkSide-20K and Argo

Craig E Aalseth et al. The European Physical Journal Plus, 133(3):1–129, 2018

There is a lot of argon underground

40Ar/36Ar ratio as a tool for geochronology and for understanding geochemical processes. [36Ar is primordial, 40Ar is a product of 40K (half-life of 1.2 billion years) decays

J.-Y.et al. Cosmochim. Acta70,4507-4512 (2006)

- 40Ar/36Ar in atmosphere: 299, 40Ar/36Ar in mantle-rocks higher
- Fairly well established : Bulk of the atmospheric argon produced from the "mantle degassing" lacksquare

DArt – measurement of 39Ar UAr

Underground Argon: Challenges and Opportunities

Challenges

- Identifying Ar-enriched gas stream •
- Cost-effective and commercial production \bullet
- Fast production to serve next ٠ generation argon-based experiments
- Techniques to measure ullet39Ar, 37Ar, 42Ar at ultra-low levels
- Proper storage of extracted argon to save it from air infiltration and contamination from cosmogenic activation.

R. Saldanha et al. Phys. Rev. C, 100:024608, 2019 C. Zhang, D. Mei . Astro. Part. Phy, Vol 142, 2022

https://arxiv.org/pdf/2203.09734.pdf

Snowmass2021 White Paper

A Facility for Low-Radioactivity Underground Argon

Henning O. Back^{1,*,†,†}, Walter Bonivento^{2,§}, Mark Boulay^{3,‡,**}, Eric Church^{1,++}, Steven R. Elliott^{4,‡‡}, Federico Gabriele^{5,§}, Cristiano Galbiati^{6,7,§§}, Graham K. Giovanetti^{8,§§}, Christopher Jackson^{1,††}, Art McDonald^{9,§§,**}, Andrew Renshaw^{10,‡}, Roberto Santorelli^{11,***}, Kate Scholberg^{12,++,+++}, Marino Simeone^{13,‡}, Rex Tayloe^{14,+++}, Richard Van de Water^{4,‡‡‡}

PNNL working with a major gas supplier to obtain from underground sources ~ 5000 ton/year

Estimated cost 3 X cost of atmospheric argon https://arxiv.org/pdf/2203.08821.pdf. ****These numbers are rough estimates

Contact: Henning O. Back for more information

PNNL-SA-171232

kton scale underground argon detector

• Use of underground argon in a kiloton scale detector like DUNE would make it a multipurpose detector : a neutrino and dark matter detector

Physics reach of the low background low threshold kton scale detector > Supernova neutrino physics: Early and late time information, sensitivity to distant supernova (from Magellanic cloud), measurements of CEvNS neutrinos

- Solar neutrino physics: increased sensitivity to Δm_{21}^2 , precision measurement of CNO flux
- Neutrinoless double beta decay($0\nu\beta\beta$) physics with Xenon-136 doping
- Dark matter physics: WIMP dark matter searches, measurements of seasonal variations of WIMPs

Snowmass2021 - White Paper

Low Background kTon-Scale Liquid Argon Time Projection Chambers

A. Avasthi¹, T. Bezerra², A. Borkum², E. Church³, J. Genovesi⁴, J. Haiston⁴, C. M. Jackson³, I. Lazanu⁵, B. Monreal¹, S. Munson³, C. Ortiz⁶, M. Parvu⁵, S. J. M. Peeters², D. Pershey⁶, S. S. Poudel³, J. Reichenbacher⁴, R. Saldanha³, K. Scholberg⁶, G. Sinev⁴, J. Zennamo⁷, H. O. Back³, J. F. Beacom⁸, F. Capozzi⁹, C. Cuesta¹⁰, Z. Djurcic¹¹, A. C. Ezeribe¹², I. Gil-Botella¹⁰, S. W. Li⁷, M. Mooney13, M. Sorel9, and S. Westerdale14

https://arxiv.org/pdf/2203.08821.pdf

Summary

- 39Ar and 42Ar/42K backgrounds are concerning for large-scale argon-based detectors.
- 42Ar production is largely cosmogenic in the earth's crust (at least to large crustal depths)
- Argon extracted from underground sources should be depleted of Ar radioactive isotopes 39Ar, 42Ar.
- Use of underground argon (UAr) will increase the sensitivity and expand the physics goals of next generation large argon-based experiments.
- The challenges are extracting argon in a kton scale and in time for next generation argon-based experiments. Sagar, LRT2022

0

Reactions considered in the TALYS-based estimate

Backup

Reactions	Production	Production	Major ⁴² Ar
	rate(TALYS-	rates based	yielding
	based) from	on FLUKA	reactions
	selected	residual nu-	
	reactions	clei record-	
	[atoms/ton/y	ihg)	
		[atoms/ton/y	t]
n,p,d,t induced	0.035	0.055	$ ^{44}$ Ca $(n, 3$ He $)^{42}$ Ar
reactions			
heavy ion	_	0.15	$^{44}Ca(H^*,X)^{42}Ar$
collisions			$ ^{48}$ Ca(H*,X) 42 Ar
direct muon in-	_	0.041	$^{44}Ca(\mu^-,2p)^{42}Ar$
duced reactions			
other reactions	—	0.044	$^{48}Ca(\Pi^-,X)^{42}Ar$
(photonuclear,			
radioactive			
decays, pion			
interactions)			

Element	Isotopes	Reactions	Energ
(Z)	(Isotopic abundance)		thresh
			old
			(MeV)
Si	28 Si(92.23%)	-	-
(Z=14)	29 Si(4.67%)		
	30 Si(3.10%)		
Р	³¹ P(100%	-	-
(Z=15)	,		
S	$^{32}S(95.02\%)$	$^{38}\mathrm{S}(lpha,\gamma)^{42}\mathrm{Ar}$	0.0
(Z = 16)	33 S(0.75%)		
	$^{34}S(4.21\%)$		
	36 S(0.02%)		
	$^{38}S(trace, \tau_{1/2}=3h)$		
Cl	³⁵ Cl(75.77%)	42 Cl β^{-} decay	-
(Z=17)	$^{37}Cl(24.23\%)$	$ ^{43}$ Cl β^- +n decay	
	$^{42}Cl(trace, \tau_{1/2}=6s)$,	
	$^{43}Cl(trace, \tau_{1/2}=280ms)$		
Ar	$^{36}Ar(0.337\%)$	40 Ar(α ,2p) 42 Ar	14.0
(Z=18)	$^{38}Ar(0.063\%)$	41 Ar(n, γ) 42 Ar	0
	$^{40}\mathrm{Ar}(99.6\%)$	40 Ar(t,p) 42 Ar	0.7
	41 Ar(trace, $\tau_{1/2}$ =109m)	()1 /	
K	³⁹ K(93.3%)	41 K(α ,X) 42 Ar	22.6
(Z=19)	40 K(0.011%)	41 K(t,2p) 42 Ar	0.8
	41 K(6.73%)	42 K(n,p) 42 Ar	0.2
	42 K(trace, $\tau_{1/2}$ =12h)		
Ca	40 Ca(96.9%)	42 Ca(α ,X) 42 Ar	33.8
(Z=20)	$^{42}Ca(0.647\%)$	43 Ca $(\alpha, X)^{42}$ Ar	34.0
. ,	$^{43}Ca(0.135\%)$	44 Ca $(\alpha, X)^{42}$ Ar	25.1
	44 Ca (2.086%)	45 Ca $(\alpha, X)^{42}$ Ar	27.6
	45 Ca(trace, $\tau_{1/2}$ =163d)	46 Ca $(\alpha, X)^{42}$ Ar	12.1
	46 Ca(0.004%)	48 Ca $(\alpha, X)^{42}$ Ar	21.6
	48 Ca (0.187%)	$^{43}Ca(n,2p)^{42}Ar$	10.7
		44 Ca(n,3He) 42 Ar	14.2
		45 Ca(n, α) 42 Ar	0.7
		$ ^{46}$ Ca(n, α +n) 42 Ar	11.4
		48 Ca(n,X) 42 Ar	28.9
		$^{44}Ca(p,3p)^{42}Ar$	22.1
		$^{43}Ca(d,2p)^{42}Ar$	13.1
		44 Ca(d,X) 42 Ar	16.9
		$^{46}Ca(d,X)^{42}Ar$	11.6
		$^{48}\mathrm{Ca}(\mathrm{d,X})^{42}\mathrm{Ar}$	18.3
Sc	$^{45}Sc(100\%)$	$ m ^{45}Sc(n,X)^{42}Ar$	21.3
(Z=21)	46 Sc(trace, $\tau_{1/2}$ =84d)	${}^{45}{ m Sc}({ m p},{ m 4p}){}^{42}{ m Ar}$	29.1
-		$^{45}Sc(d.X)^{42}Ar$	24.0

Element Isotop (Z) (Isoto $\begin{array}{|c|c|c|c|c|c|}\hline Ti & {}^{46}Ti(8) \\ \hline (Z=22) & {}^{47}Ti(7) \\ {}^{48}Ti(7) \\ {}^{49}Ti(8) \\ {}^{50}Ti(8) \\ \hline \end{array}$ $\begin{array}{|c|c|c|c|}\hline Mn & {}^{55}Mn \\ \hline (Z=25) & {}^{53}Mn \\ \hline \end{array}$ $\begin{bmatrix} Fe & {}^{54}Fe(5) \\ (Z=26) & {}^{56}Fe(9) \\ {}^{57}Fe(2) \\ {}^{58}Fe(0) \\ {}^{68}Fe(0) \end{bmatrix}$

lsotopes	Reactions		Energy
(Isotopic abundance)			thresh-
· - /			old
			(MeV)
⁴⁶ Ti(8.0%)	$^{46}{\rm Ti}(\alpha,{\rm X})^{42}$	Ar	46.0
47 Ti (7.3%)	$^{47}\text{Ti}(\alpha, X)^{42}$	Ar	40.2
$^{18}\text{Ti}(73.8\%)$	$^{48}\text{Ti}(\alpha X)^{42}$	Ar	29.6
19 Ti (5.5%)	$^{49}\text{Ti}(\alpha X)^{42}$	Ar	24.2
50Ti $(5.4%)$	$50 \text{Ti}(\alpha X)^{42}$	Δr	15.8
11(0.470)	$46 \text{Ti}(n \mathbf{X})^{42}$	Ar	31.8
	$47 \text{T}; (n \mathbf{X})^{42}$	An An	10.0
	48T;(n, X)	Ar Ar	19.9
	$11(n,\Lambda)$ 49T:(N)42	Ar	23.8
	$50 \text{ Tr}(n, X)^{42}$	Ar	11.1
	$46\pi (n,X)^{42}$	Ar	22.3
	40^{40} Ti(p,X) ⁴²	Ar	39.7
	$\operatorname{Ti}(p,X)^{42}$	Ar	40.8
	$^{48}\text{Ti}(p,X)^{42}$	Ar	31.7
	$^{49}\text{Ti}(p,X)^{42}$	Ar	32.1
	$ ^{50}$ Ti(p,X) ⁴²	Ar	22.3
	$ ^{46}$ Ti(d,X) ⁴²	Ar	34.8
	4^{47} Ti(d,X) 4^{42}	Ar	22.6
	$^{48}\text{Ti}(d,X)^{42}$	Ar	24.9
	$^{49}\text{Ti}(d,X)^{42}$	Ar	13.7
	50 Ti(d.X) 42	Ar	16.6
	46 Ti(t.X) 42	Ar	20.3
	47 Ti(t.X) 42	Ar	21.5
	48 Ti(t,X) 42	Ar	12.0
	$^{49}\text{Ti}(t \mathbf{X})^{42}$	Ar	11.0
	50 Ti(t X) 42	Δr	11.0 11.1
1553 5 (10004) 155	$\mathbf{II}(0,\mathbf{X})$		11.4
$\int_{53}^{53} Mn(100\%) = -2.7 Ec.55$	$Mn(\alpha, X)^{42}Ar$	24.5	
$\operatorname{Min}(\operatorname{trace}, \tau_{1/2} = 5.7 \operatorname{Eoy})$	$Mn(n, \mathbf{X})$ Ar $Mn(n, \mathbf{X})^{42}$ Ar	30.3 38 5	
55	$Mn(d,X)^{42}Ar$	33.6	
55	$Mn(t,X)^{42}Ar$	19.1	
54 Fe(5.85%) 54	$Fe(\alpha, X)^{42}Ar$	60.0	
56 Fe(91.75%) 54	$Fe(n,X)^{42}Ar$	49.0	
57 Fe(2.12%) 54	$Fe(p,X)^{42}Ar$	56.8	
$^{5^{\circ}}$ Fe(0.28%) $^{5^{\circ}}$	$Fe(d,X)^{42}Ar$	52.1	
Fe(trace, $\tau_{1/2} = 2.6 \text{Eoy})^{-1}$	$Fe(t, X)^{}Ar$	39.4 51 5	
56	$Fe(n,X)^{42}Ar$	41.0	
56	$Fe(p,X)^{42}Ar$	48.9	
56	$Fe(d,X)^{42}Ar$	44.1	
56	$Fe(t,X)^{42}Ar$	29.7	
57	$Fe(\alpha, X)^{42}Ar$	51.3	
57	$Fe(n, \Lambda)^{}Ar$ $Fe(n, \Lambda)^{42}Ar$	21.8 48.8	
57	$Fe(d,X)^{42}Ar$	30.7	
57	$Fe(t,X)^{42}Ar$	35.4	
58	$Fe(\alpha,X)^{42}Ar$	40.0	
58	$Fe(n,X)^{42}Ar$	38.1	
58	$Fe(p,X)^{42}Ar$	38.1	
58	$Fe(\mathbf{u}, \mathbf{\Lambda}) = \mathbf{\Lambda} \mathbf{r}$ $Fe(\mathbf{t}, \mathbf{X})^{42} \mathbf{\Lambda} \mathbf{r}$	39.4	
		30.1	

0

Thank you

Sagar, LRT2022

