Stress Induced Background in
Cryogenic Crystal Calorimeters

Roger K. Romani for the
SPICE/HeRALD Collaboration

2
40602

Berkeley



The SPICE/HeRALD Collaboration

(also called TESSERACT)

A new and growing collaboration
searching for low mass Dark Matter!

e 50+ collaborators, 8 institutions

e 3 DM target materials, unified by
state of the art TES readout

e Wantto learn more about
SPICE/HeRALD? Read our
Snowmass LOI
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Prob 1 — DM Direct Detection: Low Energy Excess

e Unknown source of low energy (below ~100 eV) events
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Seen in many different experiments

Rate varies with time since cooldown (can’t be radiogenic)

Non-ionizing for EDELWEISS/RICOCHET

Track induced backgrounds (see Daniel Egana-Ugrinovic’s talk!) can account for some, not all

e Reduce the low energy excess and you can look for low mass (MeV - GeV) DM
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—— CRESST-III DetA
—— EDELWEISS RED20
~—— MINER Sapphire

—— NUCLEUS l1g prototype
SuperCDMS CPD
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Prob 2 - Quantum Computing: Quasiparticle
Poisoning

e Superconducting quantum circuits (qubits) see
anomalously short decoherence times due to high

density of quasiparticles (QP, broken Cooper pairs)
o Problem has been holding back superconducting qubits for
at least a decade
o  With excess quasiparticles, you need to error correct:
complexity penalty ENA
o Lots of sources of excess QPs: radioactivity, muons, IR...
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Origin? Stress Induced Backgrounds

e We propose that one effect causes both problems!

Differential contraction-induced strain

e Strained crystal slowly relaxes over time, releasing energy
as athermal phonons

e Where are these stressed sites? Lots of places!
o  Glued down crystals/Neutron-Doped Transistors/samples coupled
by vacuum grease (2102.00484)
o Clamped crystals
o  Metalfilms on crystal surface

e Notunprecedented, CRESST saw stress-induced

microfractures in mid 2000s
o Clamped sapphire balls cracked crystal substrate
o Upto 100s of keV/event, ~0.1 Hz event rate

: ' See arXiv:physics/0504151
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An Apples-to-Apples Demonstration

e Two essentially identical TES/QET based athermal phonon detectors
o 1cm?by 1 mm thicksilicon absorber

e One glued down to copper substrate (high stress)
e One suspended from wire bonds (low stress)
e No calibrations, but can directly measure energy absorbed in TES

High stress Low stress




Energy Spectra

Energy Spectrum in Detectors, Cuts Applied and Efficiency Corrected
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Time Distribution of Events

e Measured “waiting time” between events
above a given energy threshold
e Waiting times longer than trace length are

Poisson distributed
o  Current software misses some triggers during
~0.02s readout
o  CRESST saw slightly different waiting times
distribution... they were 1000 times higher energy
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Time Dependence of Excess
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Time Dependence of Excess
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See both lower energy and moderate energy
background bins rates decrease over time

o T~6-10days

o Both exponential and 1/t reasonable fits to data

o  Factor ~2 rate decrease during ~5 day experiment

Saturated (high energy) events (muons etc.)
don’t vary with time (as expected!)

<15% of low energy events cut - cuts can’t cause
2x rate changes
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Source of Rates

e Saturated rate makes sense: muons, radioactive
backgrounds...

e Differing background region (lower energies):
o Varies with time: not radioactivity, track backgrounds
o  Glue causes stress, relaxation causes events

o  Much less stress in hanging calorimeter, less stress to relax
= fewer events

e Similar background region (higher energies):

o  Still varies with time, similar 1 to glued stress events

o  Circumstantial evidence: caused by similar mechanism in
both calorimeters

o  Look for source of time varying events present in both

I* calorimeters...
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Source of Rates

e Saturated rate makes sense: muons, radioactive
backgrounds...

e Differing background region (lower energies):
o Varies with time: not radioactivity, track backgrounds
o  Glue causes stress, relaxation causes events
o  Much less stress in hanging calorimeter, less stress to relax
= fewer events

e Similar background region (higher energies):
o  Still varies with time, similar 1 to glued stress events
o  Circumstantial evidence: caused by similar mechanism in
both calorimeters
o  Look for source of time varying events present in both

calorimeters...
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Stress between TES films and crystal?
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Looking for TES stress events

e Lookin multiple channels

o Presumably a stress event only happensin one TES channel at a time, more energy will end up there
o Veto TES events, hopefully get more background free region

e Look at pulse shape

o If TES fall times are much shorter than phonon collection times (not true for these calorimeters),
energy that goes directly into TES should have different pulse shape vs. collected phonons

e Tagasa TES stress event/substrate event, see what the remaining excess is made
of in low stress calorimeters
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Comparison to Other Low Mass DM Experiments

Energy Spectrum in High and Low Stress Detectors,
Compared to CPD-SLAC and CRESST-III

e Note: our low stress detector rate is still ~200x ) High Stress
CPD, ~10° CRESST . = aosc
C CRESST-II
e Why are we so much worse?

o Not fridge or shielding specific, ran CPD in this fridge, saw 10° 1
background that agreed with published measurement
within factor of ~2
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Comparison to Other Low Mass DM Experiments

Energy Spectrum in High and Low Stress Detectors,

e Note: our low stress detector rate is still ~200x Compared to CPD-SLAC and CRESST-I
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e Mitigation Plan: Fanatically minimize stress 10°
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Implications for Low Mass DM Direct Detection

Mount-associated stress release is a new background we have to worry about

o  Pretty much unimportant for high threshold detectors
o Extremely important for low threshold (low mass) direct detection

Don’t use glue on your detectors!

More generically, look for stress everywhere, try to eliminate it

o Clamping schemes
o  Filmson crystals

Time variation is a powerful tool for understanding these backgrounds
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Implications for Quantum Computing

Our model for quasiparticle poisoning:
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Stress-release radiates athermal phonons in quantum computer Si substrates,
these phonons when absorbed in quantum circuits create quasiparticles
o  Higher rate than muons + other high energy backgrounds (for setups that have high stress)

We may have identified a source of quasiparticle poisoning
o  This has plagued superconducting quantum computers for more than a decade
o Longcoherence times are of course important
o  Even more critical: stress-release “burst events” could decohere all qubits on a chip at once, make
error correction difficult/impossible

Many talks: low background techniques can be a huge boon to quantum
computing groups (and visa versa!)
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Backup: Spectra Over Time Without Cuts
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Backup: 1/t vs. Exponential Fits to Rates
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Backup: Residuals for Rate Fits
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Residual Rates in High and Low Stress Detectors Over Time, Exponential Model
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Residual Rates in High and Low Stress Detectors Over Time, 1/t Model
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Backup: Cut Passage Fraction over Time

t Passage Fraction Over Times
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Height (arb, normalized)

Backup: Pulse Shape Over Time

Low Stress Templates, All 7 Datasets
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Backup: Observed Rates Time Constants

e Differing backgrounds region (low energy):
o High stress: 6.2 +/- 0.15 days
o  Low stress: 5.9 +/-0.30 days
e Similar backgrounds region (higher energies):
o  High stress: 10.3 +/- 2.5 days
o Low stress: 10.3 +/- 2.4 days
e Saturated region:
o High and low stress statistically consistent with constant w.r.t. time model
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Threshold Rate Dependence

Rate vs. Threshold in One Time Bin
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stress detector
o Thisisour key finding
o Asdetectors are otherwise identical, we
attribute this to stress events caused by
glue joint
e High threshold background present

in both detectors
o 10+eVin low stress, 25+ eV in high stress
o  Butevents not coincident!

e Canfitrate vs. threshold data to find
extrapolated rate at zero threshold
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Time Dependence in Rate

e See both common (high threshold) and
unique (lower threshold) background rates

decrease over time with 7 ~ 6 days

o Both exponential and 1/t reasonable fits to data
o  Factor ~2 rate decrease during experiment

e Saturated (high energy) events (muons etc.)
don’t vary with time (as expected!)
e <15% of low energy events cut - cuts can’t

cause 2x rate changes
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