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COSMOGENIC INDUCED BACKGROUND SOURCES

LEGEND pCDR

arXiv: 2107.11462

● Cosmogenic radiation created when high energy particles 

interact with the atmosphere. 

● Most components can be shielded

○ Heavy shielding (surface)

○ Rock (Underground)

● Deep penetrating components are:

○ Neutrinos

○ Muons

○ Neutrons

From antarcticglaciers.org



● Double-beta decay is observable when energetically 

favored, e.g. single β-decay to neighbors not possible

● Neutrinoless double-beta decay 0νββ searches:

○ Test if lepton number violating processes exist 

(violation by ΔL = 2)

○ Probe the Majorana or Dirac nature of massive 

neutrinos

○ Allow to shed light on neutrino mass scale 

(if observed)

○ Can in combination with leptogenesis give hint 

to observed matter-antimatter asymmetry
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NEUTRINOLESS DOUBLE BETA-DECAY



Searching for neutrinoless double-beta decay of 

76

Ge in HPGe detectors, probing additional physics beyond the 

standard model, and informing the design of the next-generation LEGEND experiment
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THE MAJORANA DEMONSTRATOR

● Source & Detector: 

○ Array of p-type, point contact detectors 30 kg of 88% enriched 

76

Ge crystals  - 14 kg of natural Ge crystals

○ Included 6.7 kg of 

76

Ge inverted coaxial, point contact detectors 

in final run

● Excellent  Energy Resolution:  2.5 keV FWHM @ 2039 keV

● Analysis Threshold:     1 keV

● Low Background:  2 modules within a compact graded 

shield and active muon veto using ultra-clean materials

Reached an exposure of ~65 kg-yr before removal of the enriched detectors for 

the LEGEND-200 experiment at LNGS

Continuing to operate at the Sanford Underground Research Facility with natural detectors for background 

studies and other physics (

180m

Ta decay search, see Poster Sam Schleich)



● Production and transport on surface exposes 

Ge-crystals to cosmogenic flux

● Production of various (mostly) short lived isotopes

● 68

Ge is a known issue

○ long-half-life of 271 days

○ Daughter Q-value spans over 0νββ-ROI

● Other isotopes limit searches for BSM physics

● Reduction of surface impact by:

○ Use of shielded shipping containers

○ Minimized surface exposure

○ Underground storage location at vendor sites
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MINIMIZING THE SURFACE EXPOSURE
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NIM A 877 (2018) 314,

EPJ C 75 (2015) 39
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● Production and transport on 

surface exposes Ge-crystals to 

cosmogenic flux

● Production of various (mostly) 

short lived isotopes

● 68

Ge is a known issue

○ long-half-life of 271 days

○ Daughter Q-value spans over 

0νββ-ROI

● Other isotopes limit searches for 

BSM physics

● Reduction of surface impact by:

○ Use of shielded shipping 

containers

○ Minimized surface exposure

○ Underground storage 

location at vendor sites
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MINIMIZING THE SURFACE EXPOSURE

6

Detectors

NIM A 877 (2018) 314,

EPJ C 75 (2015) 39



● Clear identification of decay signatures at low energies

● Enriched (surface exposure controlled) detector show less 

contributions by 

3

H and other isotopes

● Allows competitive searches with small exposures

○ Fermionic Dark Matter

○ Bosonic Dark Matter

○ Sterile Neutrino

○ Solar Axions

○ Fractional Charge Particles

○ Other BSM physics like 

Pauli Exclusion Principle violation or 

Wave Function Collapse
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SEARCHES BEYOND THE STANDARD MODEL IN MJD
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C. Wiseman

NDM 2022

To be 

submitted

No surface 

control

arxiv 2206.05789

arxiv 2202.01343

 surface control
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IN-SITU COSMOGENIC PRODUCTION
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● Production Deep Underground driven by muons and 

secondary particles from showers 

(in rock, shielding materials)

● 99.9% within 1 s 

● Heavy Z-shield (Lead) increase the production of 

showers

● Wide-range of isotopes created

● Complex simulations

○ High-energy muons (up to several hundred GeV)

○ Various materials

○ Various particles in showers (short-lived, γ, α, n …)

○ Wide energy range and reaction channels

● Search for meta-stable Ge isotopes

○ Ultra low background conditions

○ Excellent energy resolution

PRC 105 (2022) 014617
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IN-SITU COSMOGENIC PRODUCTION
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● Comparison of simulated and experimental isotope rate

● Mostly neutron driven reactions

● Sensitivity to fast (

71

Ge & 

73

Ge) and slow (

75

Ge & 

77

Ge) 

neutrons

● Differences between different simulation codes were 

identified → Allows an estimation of uncertainty for 

simulated results 

PRC 105 (2022) 014617



● Final enriched detector active exposure:

64.5 ± 0.9 kg yrs 

● Background Index at 

2039 keV:

6.2 ± 0.6 x 10

-3

 cts / (keV kg yr)

● Only minor contribution 

by cosmogenics to the 0νββ-ROI 

~10

-5

 cts / (keV kg yr)

● MJD results for full data set

8.1 × 10

25

 yr  (90% C.I., sensitivity)

T

1/2

 > 8.3 × 10

25

 yr (90% C.I. limit)

mββ < 113 - 269 meV
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NEUTRINOLESS DOUBLE BETA DECAY SEARCH (NEW)
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Preliminary

J. Gruszko

Neutrino ‘22

To be 

submitted

Details see 

C. Haufe’s talk 

later today
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THE NEXT GENERATION: 

11

GERDA: Final 0νββ results 

published 

MJD: New final exposure 

results 

PRL 125, 252502 (2020)

LEGEND-200: Now in 

commissioning

LEGEND-1000: Conceptual design 

development continuing

arXiv: 2107.11462

LEGEND mission: “The collaboration aims to develop a 

phased, 

76

Ge based double-beta decay experimental 

program with discovery potential at a half-life beyond 

10

28 years, using existing resources as appropriate to 

expedite physics results.”
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THE NEXT GENERATION: 

12

LEGEND-200: Now in 

commissioning

LEGEND-1000: Conceptual design 

development continuing

arXiv: 2107.11462

LEGEND-200: 

• 200 kg, upgrade of existing GERDA 

infrastructure at Gran Sasso

• 2.5 keV FWHM resolution

• Background goal

     < 0.6 cts/(FWHM t yr)          

     < 2x10

-4 cts/(keV kg yr)

• Now in commissioning, physics 

data starting in 2022

LEGEND-1000:

• 1000 kg, staged via individual 

payloads (~400 detectors)

• Timeline connected to review 

process

• Background goal 

<0.025 cts/(FWHM t yr),

<1x10

-5

 cts/(keV kg yr)

• Location to be selected
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THE NEXT GENERATION: 
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LEGEND:

• Some effects can cause an increase of the 

cosmogenic background:

○ Larger array (more Ge per μ)

○ Less dense packing (lower 

multiplicity)

○ Depth

• Several key items and R&D will result in 

a lower contribution by cosmogenic 

particles

○ Low-Z Material (reduced shower)

○ Active veto surrounding each 

detector

○ Depth (SNOLAB)

○ Additional R&D to further reduce 

effect (LNGS):

■ Neutron tagging

■ Additional neutron 

moderator

arXiv: 2107.11462

PRC 105 (2022) 014617

See B. Lehnert’s

talk later today
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R&D TO ACHIEVE A VIRTUAL DEPTH
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● Goal: 

Reduce in-situ production or contribution of 

77(m)

Ge

● Neutron sibling tagging

○ Usually high neutron multiplicity within a cosmogenic 

shower

○ Identify delayed 

77m

Ge events by coincident events in 

Argon (tag 

41

Ar decay) or even a Gd-doped water shield

● Additional neutron moderating materials close by

○ Active moderation slows neutrons down

○ Increased neutron capture by Argon (less Ge capture 

and more vetoing of sibling)

○ Optimization between newly introduced radiogenic 

background vs moderation effect

EPJ C 78 (2018) 597

Work by C. Wiesinger, M. Neuberger, CJ Barton, I. Costa, M. Morella and others



● Creation of radioisotopes in germanium crystals is a potential 

background 

○ 68

Ge (on surface)

○ 77(m)

Ge (in-situ)

● Mitigation by short transport times and shielding on surface

● Active vetoing allows suppression of prompt in-situ 

background

● Delayed decays can be suppressed by delayed coincidence 

tagging techniques

● Additional R&D that makes use of shower characteristics and 

“over moderation” to avoid and tag 

77(m)

Ge contributions
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SUMMARY
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