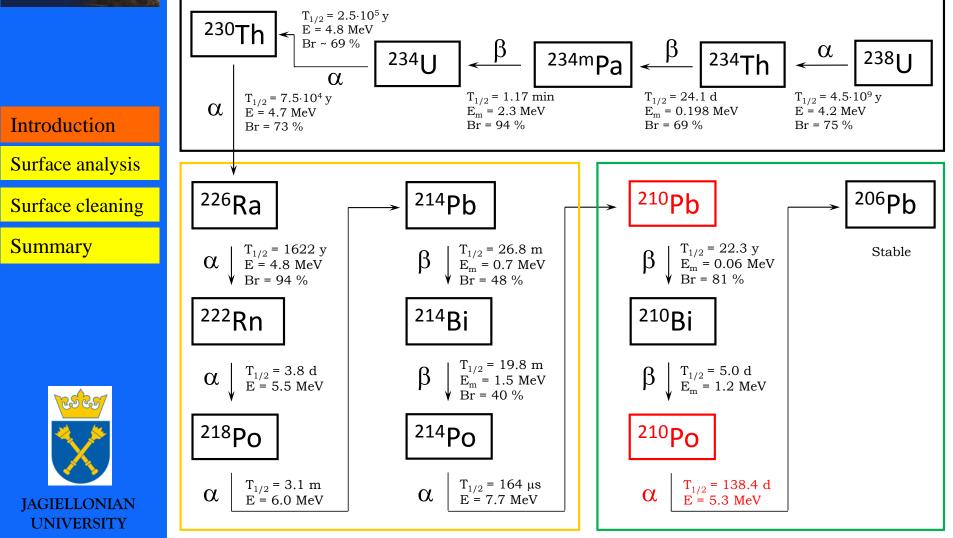


Removal of Long-Lived Radon Daughters From Surfaces

G. Zuzel, M. Czubak, T. Mróz, M. Wójcik

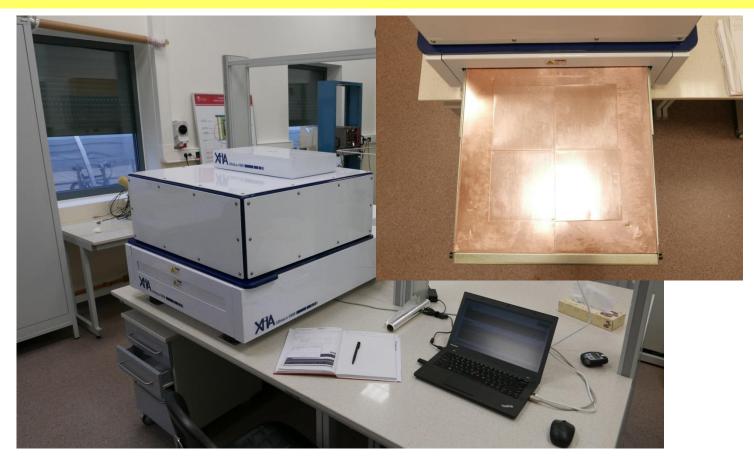
Institute of Physics Jagiellonian University, Cracow, Poland

Outline

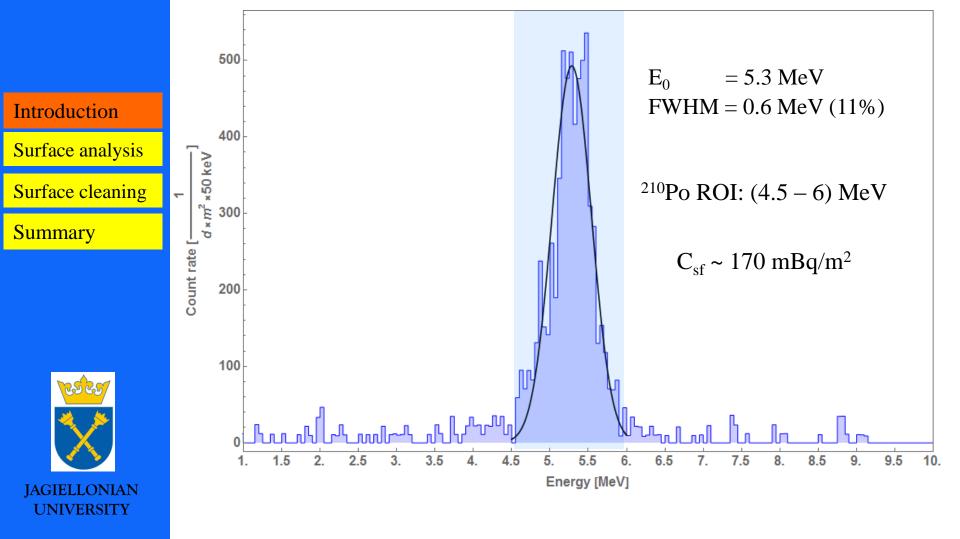


- Introduction
- Analysis of surfaces
- Cleaning of surfaces
- Summary

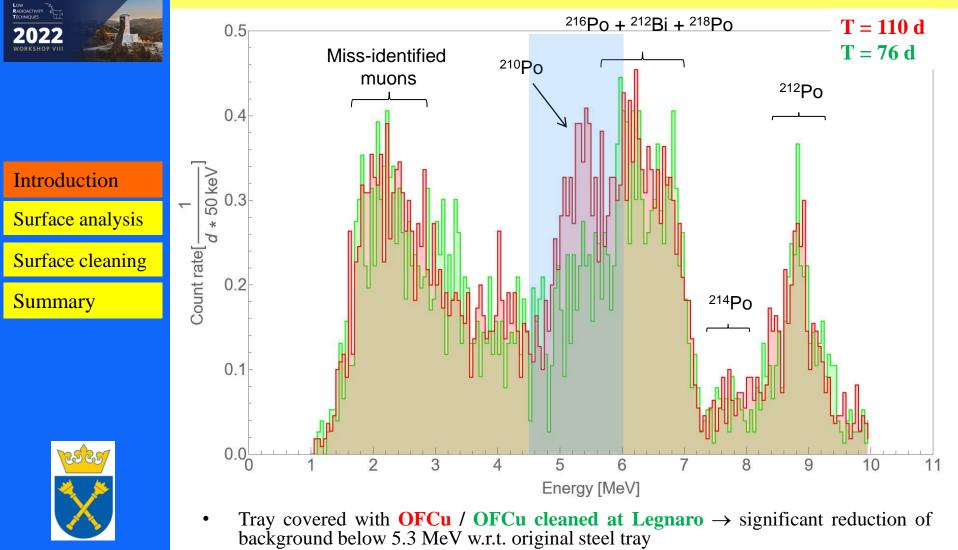
²³⁸U decay chain


Large surface alpha spectrometer

Introduction
Surface analysis
Surface cleaning



- Surface and bulk alphas registered
- Low background, large surface alpha spectrometer
- Ar used as counting gas (3.5 l/min)
- Sample size: $43 \text{ cm} \times 43 \text{ cm} / 30 \text{ cm}$ diam. disc, a few mm thick
- PSD + veto guard (discrimination of background events)


²¹⁰Po energy spectrum

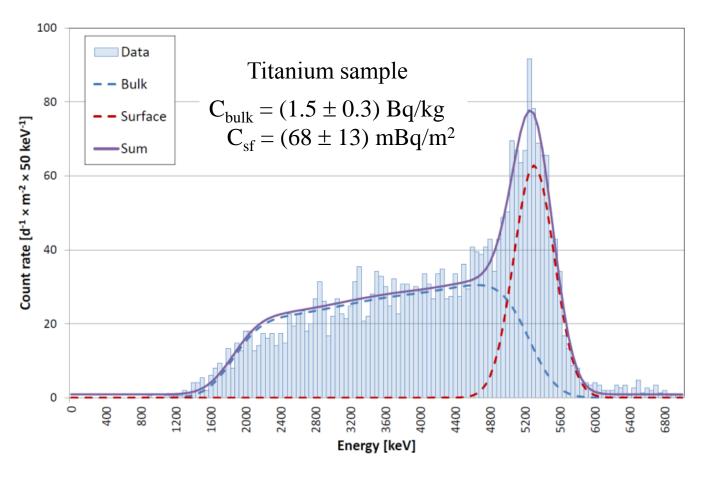
Electrolytic Tough Pitch (ETP) Copper with surface ²¹⁰Po (air-born)

Background spectrum

JAGIELLONIAN

UNIVERSITY

- Surface ROI: $(46.5 \pm 1.6) / (34.8 \pm 1.5) \text{ cpd/m}^2 \rightarrow DL \sim 7.5 \text{ cpd/m}^2 \sim 0.1 \text{ mBq/m}^2$
 - Above 5.3 MeV background dominated by ²²⁰Rn/²²²Rn daughters (residual emanation from the detector components), and around 2 MeV by miss-identification of muons


Analysis method

IntroductionSurface analysisSurface cleaningSummary

- First measurements of ²¹⁰Po in/on metals (App. Rad. Isot. 126 (2017) 165 167)
- MC used to de-convolute contributions form ²¹⁰Po in the bulk material and on the surface
- Sensitivities: $C_{bulk} \le 50 \text{ mBq/kg}, C_{sf} \le 0.1 \text{ mBq/m}^2$

Analysis of surfaces / bulk

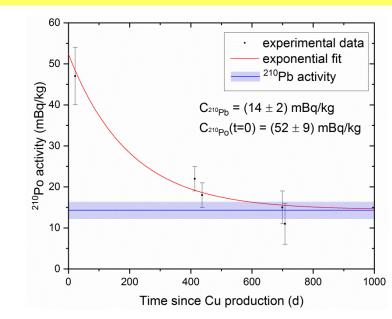
2022 WORKSHOP VIII	Sample	²¹⁰ Po surface specific activity [mBq/m ²]	²¹⁰ Po bulk specific activity [mBq/kg]	Remarks
Introduction	Fire copper	320 ± 20	$9\ 600\pm 800$ (10\ 000\pm 600)	XIA Rad-chem.
Surface analysis	ETP copper	170 ± 30	75 ± 20	Not cleaned
Surface cleaning	OFHC copper	< 0.5	54 ± 18	After cleaning
Summary	Electroformed Cu (LSC)	< 1	< 51 (20 ± 4)	XIA Rad-chem.
	High purity Ti	143 ± 21 68 ± 13 / 27 ± 4	1500 ± 300 1 400 / 1 300 ± 200 (1 800 ± 200)	Not cleaned Cleaned (2017/2022) Rad-chem. (2019)
	Stainless Steel 1.4301	< 0.5 5 ± 2	80 ± 20	Surface protected Surface not protected
	Teflon		< 46	DS-50
JAGIELLONIAN UNIVERSITY	3M ESR film	< 0.4		

Introduction

Surface analysis

Surface cleaning

Summary


Radiochemical separation of ²¹⁰Po

- Dissolution of a sample, adding tracer (²⁰⁹Po)
- Separation of Po from the matrix by an ion exchange chromatography
- Source preparation: spontaneous deposition of Po on a silver disc
- Determination of ²¹⁰Po/²⁰⁹Po activities using a low background alpha spectrometer
 - Time sequence of 210 Po measurements \rightarrow determination of 210 Pb; DL ~single mBq/kg

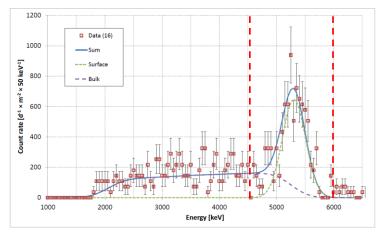
HP Cu to be

spectrometer

used as a shielding material for a HPGe

Isotope	Specific activity [mBq/kg]	Comments	
²³⁸ U	< 0.012	< 1 ppt U, 90 % C.L.	
²³² Th	< 0.004	< 1 ppt Th, 90 % C.L.	
²³⁵ U	< 0.069	90 % C.L.	ĺ
⁴⁰ K	< 0.14	90 % C.L.	
⁶⁰ Co	$(14 \pm 4) \cdot 10^{-3}$		
²³⁴ Th	< 4.2	Upper ²³⁸ U sub-chain, 90 % C.L.	
^{234m} Pa	< 0.45	Upper ²³⁸ U sub-chain, 90 % C.L.	
²²⁸ Th	< 0.041	90 % C.L.	
²²⁸ Ra	< 0.027	90 % C.L.	
²²⁶ Ra	(29 ± 8) · 10 ⁻³	Clear disequilibrium between the	
²¹⁰ Pb	14 ± 2	middle and the bottom ²³⁸ U sub-chain	

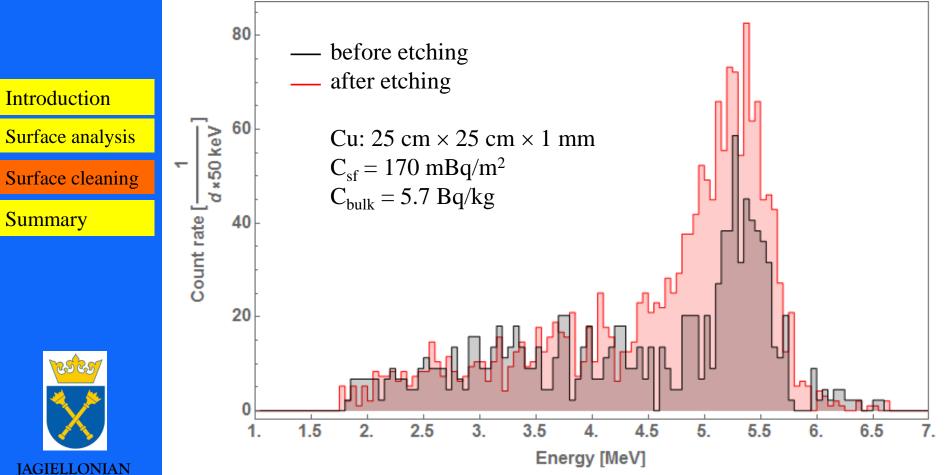
Introduction Surface analysis Surface cleaning


•

Summary

Cleaning of surfaces

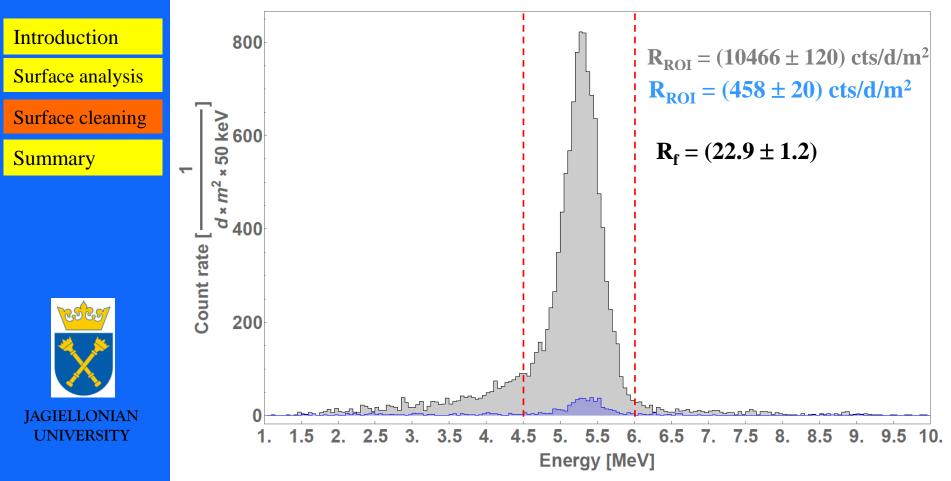
- Only ²¹⁰Po investigated
- Samples: sheets 43 cm × 43 cm × 1 mm (optimized for the XIA detector)
- "Natural" contamination usually low \rightarrow samples contaminated with ²¹⁰Po by placing them in a ²²²Rn source
 - Activity of deposited ²¹⁰Po measured before and after the treatment \rightarrow determination of the activity reduction factor
 - Various surfaces (copper, stainless steel, Ti, HPGe) and methods (etching, electro-polishing, combined techniques) tested


Etching of Copper

UNIVERSITY

Widely used procedure:

Etching 5 min in (1% $H_2SO_4 + 3\% H_2O_2$), 5 min passivation in 1% citric acid


Cu sample with high bulk ²¹⁰Po content Some ²¹⁰Po removed from the bulk (~28 mBq) re-deposited on the surface

Low And Activity of the technology of tech

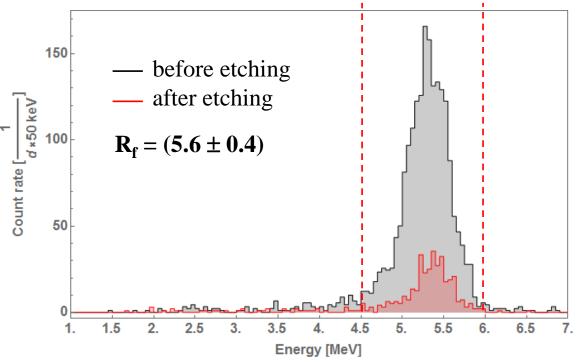
Etching of Copper

Reducing time of a single etch:

- Etching procedure: 5 x 1 min (40 s) wash with a mixture of 1% $H_2SO_4 + 3\% H_2O_2$
- Passivation with 1% citric acid (5 min)
- Washing in high-purity deionized water (18 M Ω ×cm)

Etching of Copper

Introduction


Surface analysis

Surface cleaning

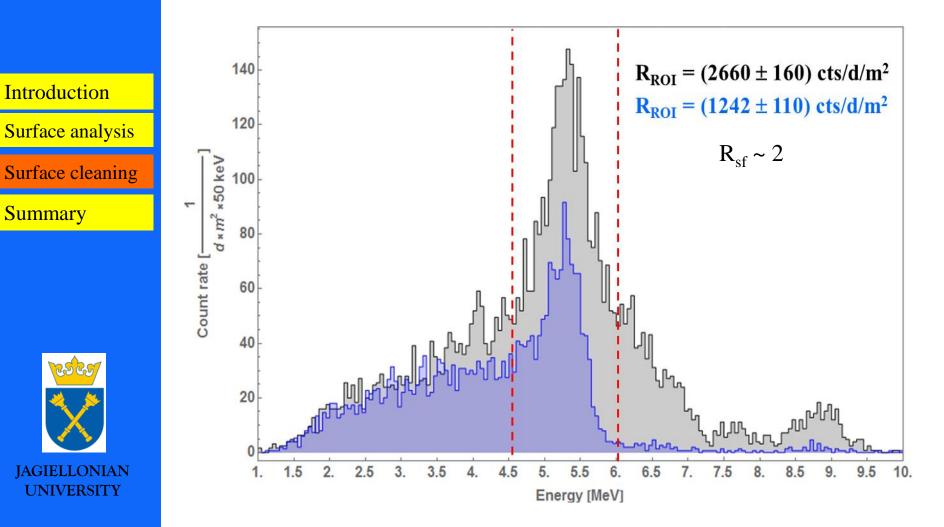
Summary

Etching in nitric acid

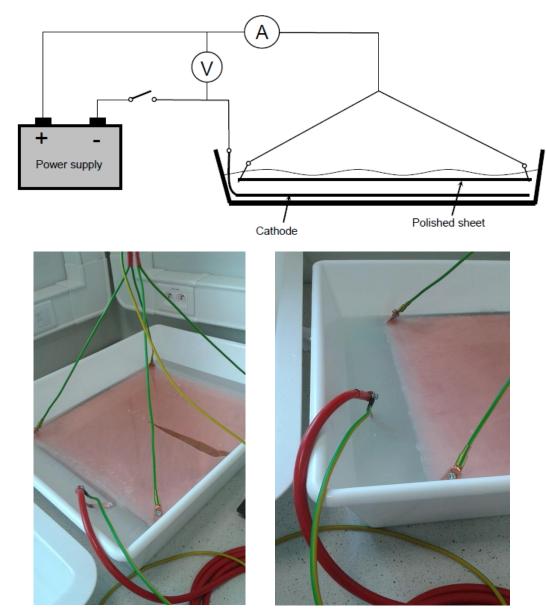
- Etching procedure: 1 run for 1 min in a mixture of 15% $HNO_3 + 2\% H_2O_2$
- Passivation with 1% citric acid

	6565	
	*	
	\checkmark	
JAG	IELLONIAN	
UI	NIVERSITY	

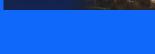
Step	Conc. of HNO ₃ [%]	Conc. of H ₂ O ₂ [%]	²¹⁰ Po reduction
1	15	2	5.6 ± 0.4
2	15	4	2.3 ± 0.3
3	15	7	5.0 ± 0.4



Introduction


Summary

Etching of Titanium


- Ti, High Purity, Gr2
- Etching procedure: 1 run for 5 min in a mixture of 5% HF + 10% HNO₃

Electro-polishing of Copper

Low Radioactivity Techniques 2022, 14-17 June 2022, South Dakota Mines / SURF, USA

2022

Introduction

Surface analysis

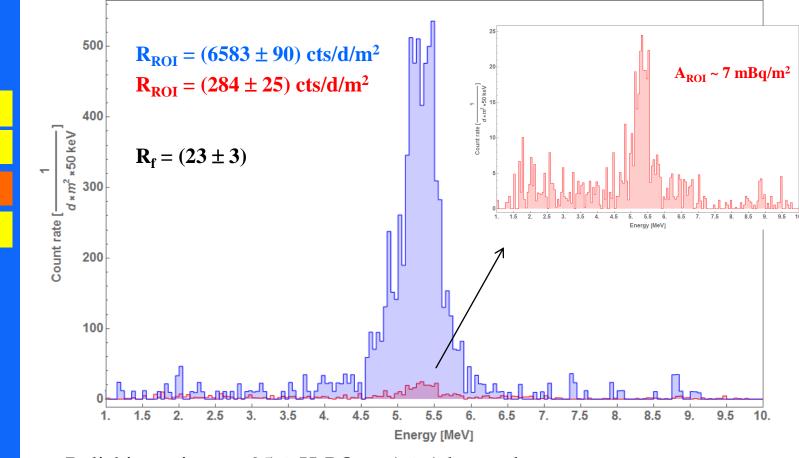
Surface cleaning

Summary

Introduction

Surface analysis

Surface cleaning


JAGIELLONIAN

UNIVERSITY

Summary

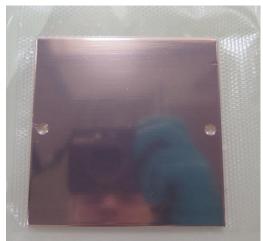
Electro-polishing of Copper

ETP copper (z4), 43 cm x 43 cm x 0.1 cm,

- Polishing mixture: 95% H₃PO₄ + 1% 1-butanol

- Polishing conditions: 2.5 A/dm², 3 V, 20 min, distance between plates: 2 cm, room temperature

DS Copper Cleaning Protocol

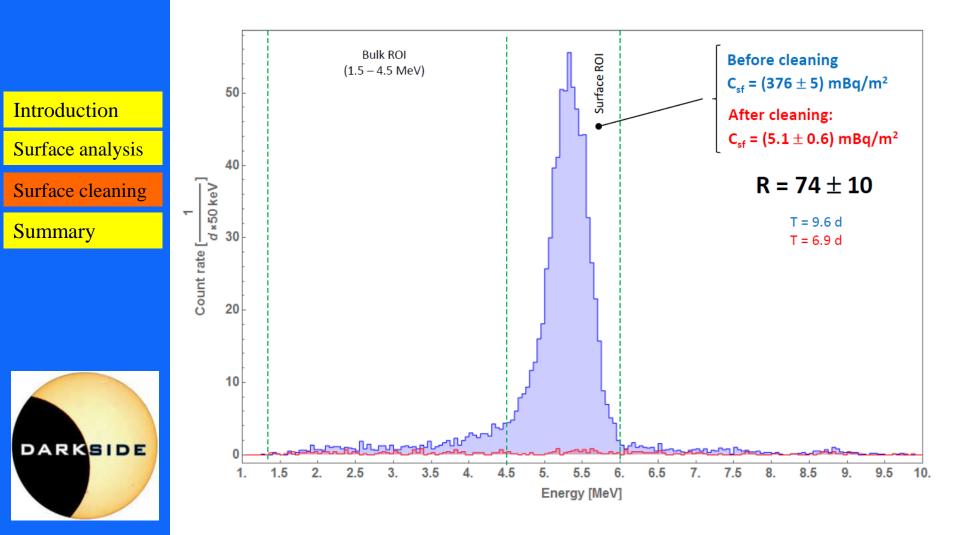

Combination of mechanical and chemical cleaning:

- Tumbling (~1 μ m)
- Electro-polishing (10-100 µm)
- Etching (~5 μ m)

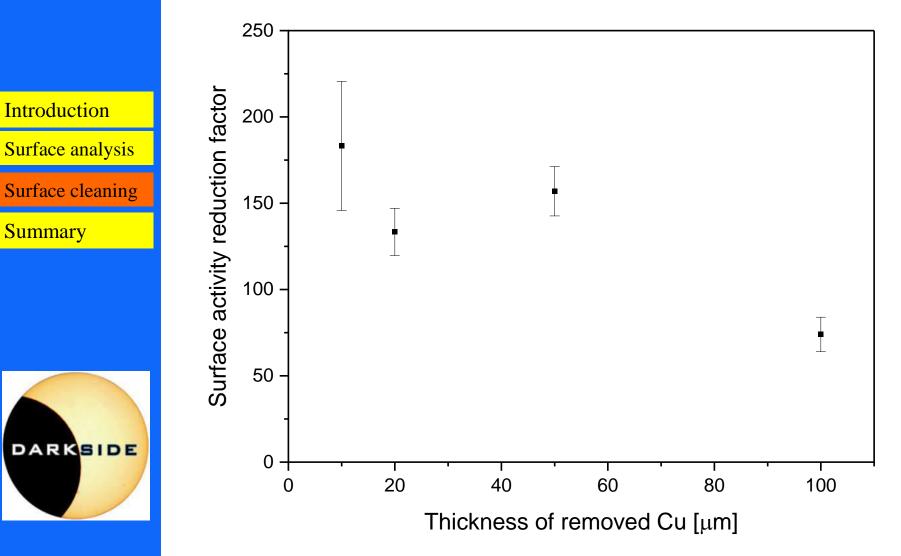
Low Radioactivity Techniques 2022, 14-17 June 2022, South Dakota Mines / SURF, USA

Introduction
Surface analysis
Surface cleaning

Summary


202

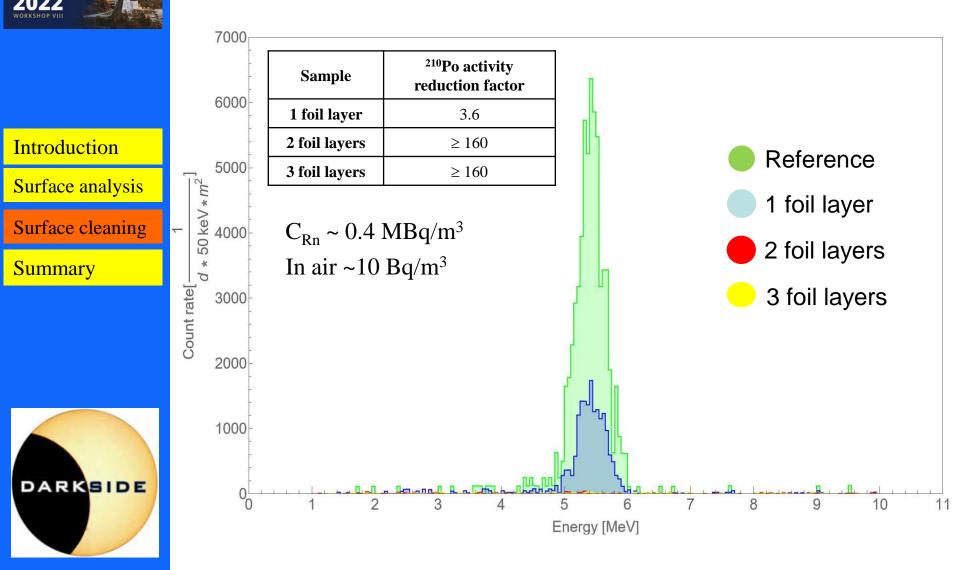
DS Copper Cleaning Protocol


Full procedure applied to contaminated samples: 100 µm Cu removed

DS Copper Cleaning Protocol

²¹⁰Po activity reduction factors vs. amount of removed Cu

Introduction Surface analysis Surface cleaning Summary


Preventing (re-)contamination

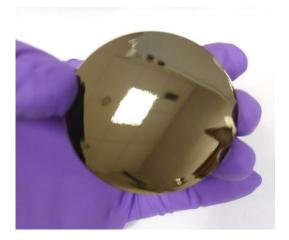
How to protect materials from recontamination with ²²²Rn daughters during storage and transportation ?

- \rightarrow Identification of materials with negligible Rn permeability
- \rightarrow Testing foil made out of triple layers: PE/PA/PE.
 - 4 Cu plates, 20 cm × 20 cm, cleaned at Legnaro and measured to verify their cleanliness
- Plates sealed in nylon bags (various number of layers applied) and placed in a ²²²Rnrich atmosphere (~0.4 MBq/m³) for 7 months. One naked plate used as a reference
- Activity of deposited ²¹⁰Po on Cu measured with the XIA detector

(J. Busto)

Preventing (re-)contamination

RADIOACTIVITY TECHNIQUES


Removal of Rn daughters from HPGe

Raw / passivated / B-implanted (like p⁺ contact) HPGe surfaces were exposed to a strong ²²²Rn source (~14.5 kBq) for 245 d (B-implanted for 68 d)

Summary

- ²¹⁰Pb and ²¹⁰Po accumulated on HPGe surfaces was measured with lowbackground gamma and alpha spectrometer, respectively.
- Exposed discs were washed in hot methanol (B-implanted) and etched (passivated HPGe) in CP4

5 cm diameter passivated HPGe disc

Removal of Rn daughters from HPGe

Introduction

Surface analysis

Surface cleaning

Summary

Raw / passivated HPGe surfaces exposed for 245 d ($1.8 \times T_{1/2}$ (²¹⁰Po))

	²¹⁰ Pb rate [cpd]	²¹⁰ Po rate [cpd]	²¹⁰ Pb sp. act. [mBq/cm ²]	²¹⁰ Po sp. act. [mBq/cm ²]	Pb / Po
Raw HPGe	3468 ± 61	28934 ± 573	120 ± 2	45 ± 1	2.7 (2.5)
Passivated HPGe	4549 ± 75	44859 ± 655	158 ± 3	70 ± 1	2.6 (2.5)

B-implanted HPGe surface exposed for 68 d ($0.5 \times T_{1/2}$ (²¹⁰Po))

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

	²¹⁰ Pb rate [cpd]	²¹⁰ Po rate [cpd]	²¹⁰ Pb sp. act. [mBq/cm ²]	²¹⁰ Po sp. act. [mBq/cm ²]	Pb / Po
Implanted HPGe	1551 ± 31	4340 ± 78	51 ± 1	6.7 ± 0.1	7.6 (8.8)

Removal of Rn daughters from HPGe

Discs processed 5 min in hot (~65 °C) methanol

T . 1	
Introd	luction

Surface analysis

Surface cleaning

Summary

	Initial rates [cpd]		Rates after 1 st cleaning [cpd]		Rates 2 nd cleaning [cpd]		Activity reduction factors R _{0->2}	
	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po
Raw HPGe	59 ± 10	28934 ± 573	74 ± 8	32801 ± 937			0.8 ± 0.2	$\textbf{0.88} \pm \textbf{0.04}$
Passivated HPGe	126 ± 15	44859 ± 655	97 ± 10	32839 ± 937	108 ± 10	1	1.2 ± 0.2	1.37 ± 0.04
Implanted HPGe	1551 ± 31	4340 ± 78	1527 ± 28	3371 ± 185		3001 ± 75 $3130 \pm 37*$	1.01± 0.03	1.39 ± 0.03

*) Disc washed 5 times for 30 sec., every time in fresh/hot methanol

Discs etched 90 s in CP4

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

	Initial rates [cpd]		Rates after cleaning [cpd]		Activity reduction factors R _{0->2}	
	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po
Raw HPGe	3468 ± 61	32801 ± 937	< 4.5	< 14	> 770	> 2 300
Passivated HPGe	4549 ± 75	32839 ± 937	< 15	< 14	> 303	> 2300

- Surface analysis
- Surface cleaning
- Summary

Summary

- Developed and tested etching / electro-polishing procedures remove effectively ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po from metal surfaces, the effect seems to be material- and surface finish dependent. "Static" etching did not affect ²¹⁰Po on copper
- ²¹⁰Po (²¹⁰Pb) surface and bulk specific activities for various materials have been investigated with sensitivities down to 0.5 mBq/m2 and 40 mBq/kg (? mBq/kg for the radiochemical method), respectively
- Clean surfaces may be effectively protected against recontamination with ²²²Rn daughters by appropriate packing materials
- ²¹⁰Po and ²¹⁰Pb are effectively removed by etching (CP4) form HPGe bare and passivated surfaces. p⁺ contact-like surface cannot be cleaned with hot methanol
- How to avoid ²¹⁰Po? \rightarrow handling of the detectors/critical components in the Rn-free atmosphere (Rn-free clean rooms)

Backup

High-activity case

	T
2022 WORKSHOP VIII	
WORKSHOP VIII	

Introduction

Surface analysis

Surface cleaning

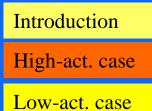
Summary

	Activity reduction factors after etching/electropolis							
Isotope			Germanium					
	Copper	Stainless steel	NPGe	HPGe				
²¹⁰ Pb	50 / 300	100 / 400	100 / -	700 / -				
²¹⁰ Bi	50 / 300	100 / 800	400 / -	800 / -				
²¹⁰ Po	1/400	20 / 700	1000 / -	100 / -				

Copper

- etching: 5 min in $(1\% H_2SO_4 + 3\% H_2O_2)$ and 5 min in 1% citric acid - electro-polishing: 85 % $H_3PO_4 + 5$ % 1-butanol ($C_4H_{10}O$)

Stainless steel:

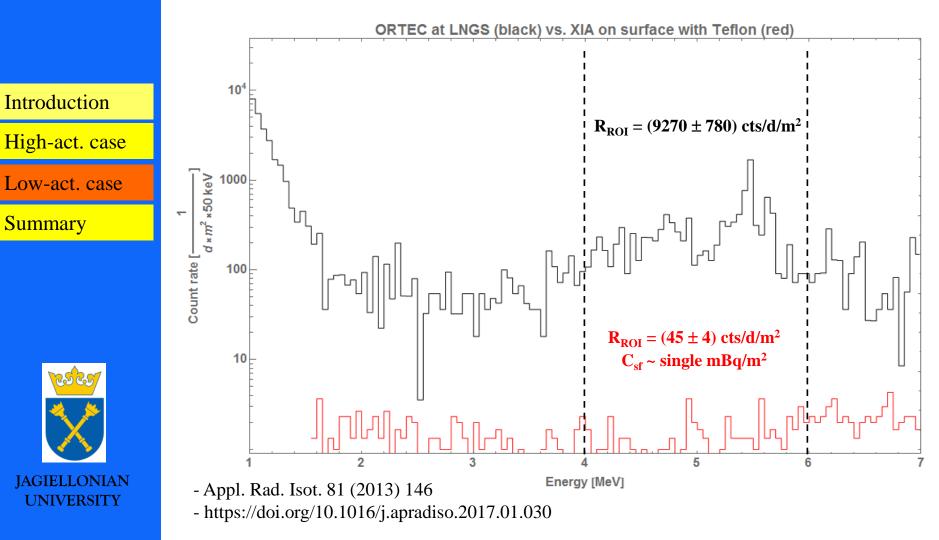

- etching: (20 % HNO₃ + 1.7 % HF) and 15 % HNO₃
- electro-polishing: 40 % $H_3PO_4 + 40$ % $H_2SO_4 + 3$ % CrO_3

Germanium:

- etching: CP4 solution (45.45 ml HNO_3 + 27.27 ml HF + 27.27 ml CH₃COOH + 0.5 ml Br for 100 ml solvent) done by Canberra-France in Lingolsheim in cooperation with MPP Munich

NIM A 676 (2012) 140 NIM A 676 (2012) 149

Summary

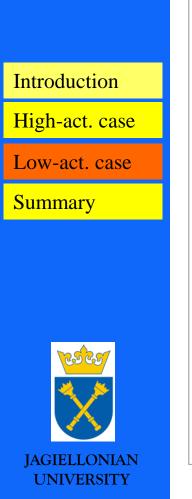


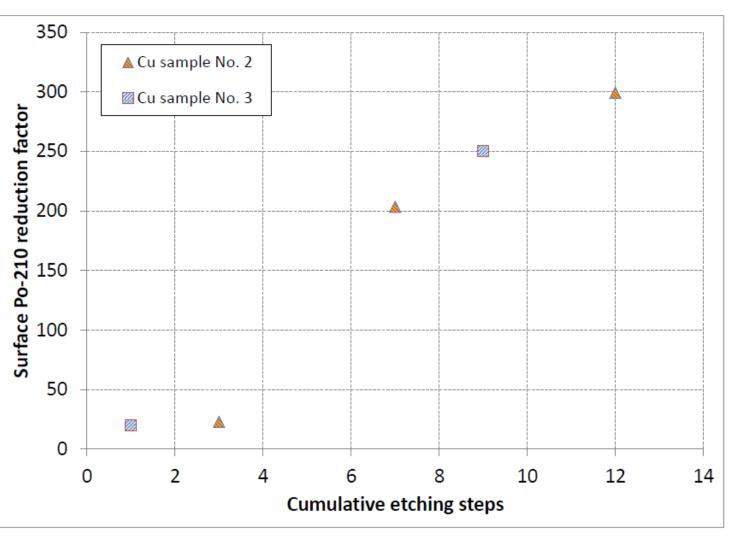
High-activity case

- Samples in a form of discs with 50 mm diameter
- To increase the sensitivity samples were artificially loaded with ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po: placed in a strong ²²²Rn source for several months (²¹⁰Po specific activities of ~100 Bq/m²)
- Screening of ²¹⁰Po with an alpha spectrometer 50 mm Si-detector, bcg ~2 α/d (1-10 MeV) sensitivity ~20 mBq/m² (100 mBq/kg, ²¹⁰Po)
- Screening of ²¹⁰Bi with a beta spectrometer 2×50 mm Si(Li)-detectors, bcg ~0.18/0.40 cpm sensitivity ~10 Bq/kg (²¹⁰Bi)
- Screening of ²¹⁰Pb (46.6 keV line) with a gamma spectrometer 16 % HPGe detector with an active and a passive shield

Background spectrum

Low background ORTEC α detector (40 mm diameter) at LNGS vs. LBS spectrometer: **factor** ~200 improvement.




RADIOACTIVITY TECHNIQUES

2022

"Dynamic" etching

