Development of an ultralow-background bolometric alpha detector for the measurement of surface contamination

G. Benato, E. Celi, M. Olmi, S. Ghislandi, and S. Quitadamo Low Radioactivity Techniques, Rapid City, June 2022

Work supported by the EU Horizon 2020 research and innovation program under the MSCA GA No. 754496

Surface α 's as background - $0\nu\beta\beta$ bolometric searches

- Bolometric experiments for 0vββ decay (e.g. CUORE) have the highest background from degraded α particles emitted by the passive support materials (mainly copper)
- Next-generation experiments (CUPID, AMoRE) will use scintillating crystals for particle identification \rightarrow Surface β 's from e.g. ²¹⁴Bi still a significant source of background

Surface α 's as background - WIMP searches

- WIMP searches with scintillating crystals are highly sensitive to the surface contamination of the reflector
- WIMP searches with bolometers subject to β's and nuclear recoil background from surface radioactive contamination
- WIMP searches using TPCs are subject to the diffusion of ²²²Rn into the sensitive volume
 → Rn outgassing can be measured just for a subset of materials

Current technologies for measuring surface contamination

XIA UltraLo-1800

- Large area
- Lowest background
- Easy operation
- Poor resolution

Ion-implanted Si detectors

- Easy operation
- High resolution
- Small area
- High background

TPCs

Large area

- Not plug&play
- Poor resolution
- R&D still ongoing

BiPo

- Large area
- Only thin foils
- Measures only BiPo's

Requirements for next-generation $\boldsymbol{\alpha}$ detector

- Sensitivity to surface ²³²Th or ²³⁸U contamination down to few nBq/cm² \rightarrow Area \ge 1 m²
 - \rightarrow Background $\leq 10^{-8}$ cts/s/cm² in the full α range
- Capability to distinguish different parts of the ²³²Th and ²³⁸U chain that are out of equilibrium \rightarrow Energy resolution \leq 20 keV FWHM to distinguish different α peaks
- Sensitivity to depth profile of surface contamination
 - \rightarrow No deformation induced by e.g. dead layers
 - \rightarrow Energy resolution of few keV FWHM

None of the existing technologie satisfies all these requirements!

Name	Producer or location	Background	Background	FWHM	Active	Sensitivity [nBq/cm²]
		level	region	@5 MeV	area	
		[10 ⁻⁹ cts/s/cm ²]	[MeV]	[keV]	[m ²]	
UltraLo-1800	XIA	~250	2.5-10	~400	0.18	~30
PIPS	various	$\sim 10^{4}$	1-10	≥20	0.0012	$\sim 10^{4}$
Bi-Po	LSC	0.1			3.6	~0.1
TPCs	various	1-30	2.5-10	150-300	≤0.24	1-30

Cryogenic calorimeters

Highly sensitive calorimeter operated at cryogenic temperature (~10 mK). Energy measured as temperature variation of the absorber:

-4500

-5000

-5500

-6000

()

2000

$$\Delta T(t) = \frac{\Delta E}{C} \exp\left(-\frac{t}{\tau}\right) \quad \tau = C/G$$

Main advantages:

- Detector modularity
- Stable long-term operation possible
- Great dynamic range, few keV to 10 MeV
- Excellent energy resolution ($\leq 10 \text{ keV FWHM}$)
- Voltage (mV) Possibility to use different absorber crystals and select the one with the lowest radioactive contamination

 $\tau = C/G$

6000

8000

4000

6

10000

Time (ms)

The SURFACE detector concept

- Array of disk-like material samples interleaved with thin, disk-like absorbers
 → Samples of thickness up to ~5 mm possible
- Operated as bolometer
 - \rightarrow No dead layer!
 - → Can be sensitive to the contamination depth profile
- Intrinsic backgrounds:
 - α particles from detector holder \rightarrow Minimize area of passive material
 - α particles from absorbers
 - \rightarrow Can be rejected with coincidence analysis
- Thermal variation measured with Ge-NTD thermistors
 → Great linearity (if you operate them properly...)
- 20 keV resolution would allow to distinguish most α lines from ²³²Th and ²³⁸U chains

First SURFACE prototype

Detector components:

- 8 intrinsic high-resistivity silicon wafers operated as bolometer
- 15 mm diameter, 1 mm thickness
- 4 copper frames, 2 wafers per frame
- Temperature readout with leftover Cupid-Mo Ge-NTD thermistors
- Leftover CUORE Si heaters to inject artificial pulses for thermal stabilization

Experimental setup and operation

- ¹⁴⁷Sm source smeared on nylon foil wrapped around holders
 - \rightarrow Expect a peak at 2.2 MeV
 - \rightarrow Combined calibration and background measurement
- Operated in wet R&D dilution refrigerator @LNGS
 - \rightarrow 6.5 days of calibration+background data
 - \rightarrow Few hours of linearity studies with pulser scan data

Detector performance

- 1 dead channel, 1 noisy channel, 2 without pulser
- Resolution computed only on pulser peak
- 1 keV threshold on multiple channels
 → Can definitely see nuclear recoils and X-rays!
- Non-homogeneous time profile of event pulses
 → Different thermalization and/or NTD gluing
- Non-linearity of energy scale
 - \rightarrow Suboptimal NTD working points

Background

- Selected 4 channels with best performance and working pulser
- ¹⁴⁷Sm peak visible, low energy tail as expected
- Large continuum below 1 MeV due to γ source used for other detectors present in the setup
- Non-linearity of the energy spectrum above ~3 MeV
 - \rightarrow Energy of a events not reliable
 - \rightarrow With the current data, just count events above ^{147}Sm peak
- Integrated background in the [2.5,10] MeV region: <10⁻⁷ events/s/cm²
 - → detector fabrication and installation NOT performed in clean room or glove box!
 - \rightarrow Space for improvement!

Next steps

- 1. Fix non-linearity issue
 - a. Optimize NTD working point
 - b. Correct using pulser events, validate with α source
- 2. Find out a smarter way to calibrate
 - a. Shining optical photons with fiber?
 - b. Use implanted ²²⁴Ra or ²¹²Pb source?
- 3. Long background run with \geq 20 channels
 - a. Full background model using MC simulations
 - b. Evaluate impact of clean room or glove box operations
 - c. Compare frame and detector background
- 4. Measure samples

