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Surface α’s as background - 0νββ bolometric searches

● Bolometric experiments for 0νββ decay (e.g. CUORE) have the highest background from degraded 
α particles emitted by the passive support materials (mainly copper)

● Next-generation experiments (CUPID, AMoRE) will use scintillating crystals for particle identification
→ Surface β’s from e.g. 214Bi still a significant source of background
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Surface α’s as background - WIMP searches

● WIMP searches with scintillating crystals are highly sensitive to the surface contamination of the 
reflector

● WIMP searches with bolometers subject to β’s and nuclear recoil background from surface 
radioactive contamination

● WIMP searches using TPCs are subject to the diffusion of 222Rn into the sensitive volume
→ Rn outgassing can be measured just for a subset of materials
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XIA UltraLo-1800

● Large area
● Lowest background
● Easy operation
● Poor resolution

Ion-implanted Si detectors

● Easy operation
● High resolution
● Small area
● High background

TPCs

● Large area
● Not plug&play
● Poor resolution
● R&D still ongoing

BiPo

● Large area
● Only thin foils
● Measures only BiPo’s

Current technologies for measuring surface contamination
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Requirements for next-generation α detector
● Sensitivity to surface 232Th or 238U contamination down to few nBq/cm2 

→ Area ≥ 1 m2

→ Background ≤ 10-8 cts/s/cm2 in the full α range
● Capability to distinguish different parts of the 232Th and 238U chain that are out of equilibrium

→ Energy resolution ≤ 20 keV FWHM to distinguish different α peaks
● Sensitivity to depth profile of surface contamination

→ No deformation induced by e.g. dead layers
→ Energy resolution of few keV FWHM

None of the existing technologie satisfies all these requirements!
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Name Producer or 
location

Background 
level

[10-9 cts/s/cm2]

Background 
region
[MeV]

FWHM
@5 MeV

[keV]

Active
area
[m2]

Sensitivity 
[nBq/cm2]

UltraLo-1800 XIA ~250 2.5-10 ~400 0.18 ~30
PIPS various ~104 1-10 ≥20 0.0012 ~104

Bi-Po LSC 0.1 3.6 ~0.1
TPCs various 1-30 2.5-10 150-300 ≤0.24 1-30



Cryogenic calorimeters
Highly sensitive calorimeter operated at cryogenic temperature (~10 mK).
Energy measured as temperature variation of the absorber:

                    Main advantages:

● Detector modularity
● Stable long-term operation possible
● Great dynamic range, few keV to 10 MeV
● Excellent energy resolution (≤10 keV FWHM)
● Possibility to use different absorber crystals

and select the one with the lowest radioactive
contamination
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The SURFACE detector concept
● Array of disk-like material samples

interleaved with thin, disk-like absorbers
→ Samples of thickness up to ~5 mm possible

● Operated as bolometer
→ No dead layer!
→ Can be sensitive to the contamination
    depth profile

● Intrinsic backgrounds:
○ α particles from detector holder

→ Minimize area of passive material
○ α particles from absorbers

→ Can be rejected with coincidence analysis
● Thermal variation measured with Ge-NTD thermistors

→ Great linearity (if you operate them properly…)
● 20 keV resolution would allow to distinguish

 most α lines from 232Th and 238U chains
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First SURFACE prototype
Detector components:

● 8 intrinsic high-resistivity silicon wafers operated as bolometer
● 15 mm diameter, 1 mm thickness
● 4 copper frames, 2 wafers per frame
● Temperature readout with leftover Cupid-Mo Ge-NTD thermistors
● Leftover CUORE Si heaters to inject artificial pulses for thermal 

stabilization

Experimental setup and operation

● 147Sm source smeared on nylon foil wrapped around holders
→ Expect α peak at 2.2 MeV
→ Combined calibration and background measurement

● Operated in wet R&D dilution refrigerator @LNGS
→ 6.5 days of calibration+background data
→ Few hours of linearity studies with pulser scan data
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Detector performance
● 1 dead channel, 1 noisy channel, 2 without pulser
● Resolution computed only on pulser peak
● 1 keV threshold on multiple channels

→ Can definitely see nuclear recoils and X-rays!
● Non-homogeneous time profile of event pulses

→ Different thermalization and/or NTD gluing
● Non-linearity of energy scale

→ Suboptimal NTD working points
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Channel
Pulser 

resolution
FWHM [keV]

Risetime
[ms]

Decay time
[ms]

Threshold
[keV]

41 no pulser 166±3 1182±35 2.2
43 0.80±0.02 60±3 106±3 1.4
44 0.51±0.02 31±1 44±1 1.1
45 0.79±0.04 65±3 217±4 1.3
47 3.56±0.17 63±3 106±3 6.3
48 no pulser 34±1 62±2 1.0



Background
● Selected 4 channels with best performance and working pulser
● 147Sm peak visible, low energy tail as expected
● Large continuum below 1 MeV due to γ source used for other detectors present in the setup
● Non-linearity of the energy spectrum above  ~3 MeV

→ Energy of α events not reliable
→ With the current data, just count events above 147Sm peak

● Integrated background in the
[2.5,10] MeV region: <10-7 events/s/cm2

→ detector fabrication and installation
    NOT performed in clean room
    or glove box!
→ Space for improvement!
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Next steps

1. Fix non-linearity issue
a. Optimize NTD working point
b. Correct using pulser events, validate with α source

2. Find out a smarter way to calibrate
a. Shining optical photons with fiber?
b. Use implanted 224Ra or 212Pb source?

3. Long background run with ≥ 20 channels
a. Full background model using MC simulations
b. Evaluate impact of clean room or glove box operations
c. Compare frame and detector background

4. Measure samples
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